Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | pr2eldif2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pren2 | ||
2 | prid2g | ||
3 | 2 | 3ad2ant2 | |
4 | necom | ||
5 | nelsn | ||
6 | 4 5 | sylbi | |
7 | 6 | 3ad2ant3 | |
8 | 3 7 | eldifd | |
9 | 1 8 | sylbi |