Metamath Proof Explorer


Theorem pr2eldif2

Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023)

Ref Expression
Assertion pr2eldif2 A B 2 𝑜 B A B A

Proof

Step Hyp Ref Expression
1 pren2 A B 2 𝑜 A V B V A B
2 prid2g B V B A B
3 2 3ad2ant2 A V B V A B B A B
4 necom A B B A
5 nelsn B A ¬ B A
6 4 5 sylbi A B ¬ B A
7 6 3ad2ant3 A V B V A B ¬ B A
8 3 7 eldifd A V B V A B B A B A
9 1 8 sylbi A B 2 𝑜 B A B A