Metamath Proof Explorer


Theorem prcofval

Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcofvalg.b B = D Func E
prcofvalg.n N = D Nat E
prcofvala.d φ D V
prcofvala.e φ E W
prcofval.r Rel R
prcofval.f φ F R G
Assertion prcofval Could not format assertion : No typesetting found for |- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 prcofvalg.b B = D Func E
2 prcofvalg.n N = D Nat E
3 prcofvala.d φ D V
4 prcofvala.e φ E W
5 prcofval.r Rel R
6 prcofval.f φ F R G
7 opex F G V
8 7 a1i φ F G V
9 1 2 3 4 8 prcofvala Could not format ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` <. F , G >. ) ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` <. F , G >. ) ) ) ) >. ) with typecode |-
10 5 brrelex12i F R G F V G V
11 op1stg F V G V 1 st F G = F
12 6 10 11 3syl φ 1 st F G = F
13 12 coeq2d φ a 1 st F G = a F
14 13 mpteq2dv φ a k N l a 1 st F G = a k N l a F
15 14 mpoeq3dv φ k B , l B a k N l a 1 st F G = k B , l B a k N l a F
16 15 opeq2d φ k B k func F G k B , l B a k N l a 1 st F G = k B k func F G k B , l B a k N l a F
17 9 16 eqtrd Could not format ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. B |-> ( k o.func <. F , G >. ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. F ) ) ) >. ) with typecode |-