Metamath Proof Explorer


Theorem prdsco

Description: Structure product composition operation. (Contributed by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P = S 𝑠 R
prdsbas.s φ S V
prdsbas.r φ R W
prdsbas.b B = Base P
prdsbas.i φ dom R = I
prdshom.h H = Hom P
prdsco.o ˙ = comp P
Assertion prdsco φ ˙ = a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x

Proof

Step Hyp Ref Expression
1 prdsbas.p P = S 𝑠 R
2 prdsbas.s φ S V
3 prdsbas.r φ R W
4 prdsbas.b B = Base P
5 prdsbas.i φ dom R = I
6 prdshom.h H = Hom P
7 prdsco.o ˙ = comp P
8 eqid Base S = Base S
9 1 2 3 4 5 prdsbas φ B = x I Base R x
10 eqid + P = + P
11 1 2 3 4 5 10 prdsplusg φ + P = f B , g B x I f x + R x g x
12 eqid P = P
13 1 2 3 4 5 12 prdsmulr φ P = f B , g B x I f x R x g x
14 eqid P = P
15 1 2 3 4 5 8 14 prdsvsca φ P = f Base S , g B x I f R x g x
16 eqidd φ f B , g B S x I f x 𝑖 R x g x = f B , g B S x I f x 𝑖 R x g x
17 eqid TopSet P = TopSet P
18 1 2 3 4 5 17 prdstset φ TopSet P = 𝑡 TopOpen R
19 eqid P = P
20 1 2 3 4 5 19 prdsle φ P = f g | f g B x I f x R x g x
21 eqid dist P = dist P
22 1 2 3 4 5 21 prdsds φ dist P = f B , g B sup ran x I f x dist R x g x 0 * <
23 1 2 3 4 5 6 prdshom φ H = f B , g B x I f x Hom R x g x
24 eqidd φ a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x = a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
25 1 8 5 9 11 13 15 16 18 20 22 23 24 2 3 prdsval φ P = Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx H comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
26 ccoid comp = Slot comp ndx
27 4 fvexi B V
28 27 27 xpex B × B V
29 28 27 mpoex a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x V
30 29 a1i φ a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x V
31 snsspr2 comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x Hom ndx H comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
32 ssun2 Hom ndx H comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx H comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
33 31 32 sstri comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx H comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
34 ssun2 TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx H comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx H comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
35 33 34 sstri comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x Base ndx B + ndx + P ndx P Scalar ndx S ndx P 𝑖 ndx f B , g B S x I f x 𝑖 R x g x TopSet ndx TopSet P ndx P dist ndx dist P Hom ndx H comp ndx a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x
36 25 7 26 30 35 prdsvallem φ ˙ = a B × B , c B d 2 nd a H c , e H a x I d x 1 st a x 2 nd a x comp R x c x e x