Metamath Proof Explorer


Theorem prdstset

Description: Structure product topology. (Contributed by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P=S𝑠R
prdsbas.s φSV
prdsbas.r φRW
prdsbas.b B=BaseP
prdsbas.i φdomR=I
prdstset.l O=TopSetP
Assertion prdstset φO=𝑡TopOpenR

Proof

Step Hyp Ref Expression
1 prdsbas.p P=S𝑠R
2 prdsbas.s φSV
3 prdsbas.r φRW
4 prdsbas.b B=BaseP
5 prdsbas.i φdomR=I
6 prdstset.l O=TopSetP
7 eqid BaseS=BaseS
8 1 2 3 4 5 prdsbas φB=xIBaseRx
9 eqid +P=+P
10 1 2 3 4 5 9 prdsplusg φ+P=fB,gBxIfx+Rxgx
11 eqid P=P
12 1 2 3 4 5 11 prdsmulr φP=fB,gBxIfxRxgx
13 eqid P=P
14 1 2 3 4 5 7 13 prdsvsca φP=fBaseS,gBxIfRxgx
15 eqidd φfB,gBSxIfx𝑖Rxgx=fB,gBSxIfx𝑖Rxgx
16 eqidd φ𝑡TopOpenR=𝑡TopOpenR
17 eqid P=P
18 1 2 3 4 5 17 prdsle φP=fg|fgBxIfxRxgx
19 eqid distP=distP
20 1 2 3 4 5 19 prdsds φdistP=fB,gBsupranxIfxdistRxgx0*<
21 eqidd φfB,gBxIfxHomRxgx=fB,gBxIfxHomRxgx
22 eqidd φaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex=aB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
23 1 7 5 8 10 12 14 15 16 18 20 21 22 2 3 prdsval φP=BasendxB+ndx+PndxPScalarndxSndxP𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxPdistndxdistPHomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
24 tsetid TopSet=SlotTopSetndx
25 fvexd φ𝑡TopOpenRV
26 snsstp1 TopSetndx𝑡TopOpenRTopSetndx𝑡TopOpenRndxPdistndxdistP
27 ssun1 TopSetndx𝑡TopOpenRndxPdistndxdistPTopSetndx𝑡TopOpenRndxPdistndxdistPHomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
28 26 27 sstri TopSetndx𝑡TopOpenRTopSetndx𝑡TopOpenRndxPdistndxdistPHomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
29 ssun2 TopSetndx𝑡TopOpenRndxPdistndxdistPHomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxexBasendxB+ndx+PndxPScalarndxSndxP𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxPdistndxdistPHomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
30 28 29 sstri TopSetndx𝑡TopOpenRBasendxB+ndx+PndxPScalarndxSndxP𝑖ndxfB,gBSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxPdistndxdistPHomndxfB,gBxIfxHomRxgxcompndxaB×B,cBd2ndafB,gBxIfxHomRxgxc,efB,gBxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
31 23 6 24 25 30 prdsbaslem φO=𝑡TopOpenR