Metamath Proof Explorer


Theorem prdsmulrngcl

Description: Closure of the multiplication in a structure product of non-unital rings. (Contributed by Mario Carneiro, 11-Mar-2015) Generalization of prdsmulrcl . (Revised by AV, 21-Feb-2025)

Ref Expression
Hypotheses prdsmulrngcl.y Y=S𝑠R
prdsmulrngcl.b B=BaseY
prdsmulrngcl.t ·˙=Y
prdsmulrngcl.s φSV
prdsmulrngcl.i φIW
prdsmulrngcl.r φR:IRng
prdsmulrngcl.f φFB
prdsmulrngcl.g φGB
Assertion prdsmulrngcl φF·˙GB

Proof

Step Hyp Ref Expression
1 prdsmulrngcl.y Y=S𝑠R
2 prdsmulrngcl.b B=BaseY
3 prdsmulrngcl.t ·˙=Y
4 prdsmulrngcl.s φSV
5 prdsmulrngcl.i φIW
6 prdsmulrngcl.r φR:IRng
7 prdsmulrngcl.f φFB
8 prdsmulrngcl.g φGB
9 6 ffnd φRFnI
10 1 2 4 5 9 7 8 3 prdsmulrval φF·˙G=xIFxRxGx
11 6 ffvelcdmda φxIRxRng
12 4 adantr φxISV
13 5 adantr φxIIW
14 9 adantr φxIRFnI
15 7 adantr φxIFB
16 simpr φxIxI
17 1 2 12 13 14 15 16 prdsbasprj φxIFxBaseRx
18 8 adantr φxIGB
19 1 2 12 13 14 18 16 prdsbasprj φxIGxBaseRx
20 eqid BaseRx=BaseRx
21 eqid Rx=Rx
22 20 21 rngcl RxRngFxBaseRxGxBaseRxFxRxGxBaseRx
23 11 17 19 22 syl3anc φxIFxRxGxBaseRx
24 23 ralrimiva φxIFxRxGxBaseRx
25 1 2 4 5 9 prdsbasmpt φxIFxRxGxBxIFxRxGxBaseRx
26 24 25 mpbird φxIFxRxGxB
27 10 26 eqeltrd φF·˙GB