Metamath Proof Explorer


Theorem prdsplusgsgrpcl

Description: Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses prdsplusgsgrpcl.y Y=S𝑠R
prdsplusgsgrpcl.b B=BaseY
prdsplusgsgrpcl.p +˙=+Y
prdsplusgsgrpcl.s φSV
prdsplusgsgrpcl.i φIW
prdsplusgsgrpcl.r No typesetting found for |- ( ph -> R : I --> Smgrp ) with typecode |-
prdsplusgsgrpcl.f φFB
prdsplusgsgrpcl.g φGB
Assertion prdsplusgsgrpcl φF+˙GB

Proof

Step Hyp Ref Expression
1 prdsplusgsgrpcl.y Y=S𝑠R
2 prdsplusgsgrpcl.b B=BaseY
3 prdsplusgsgrpcl.p +˙=+Y
4 prdsplusgsgrpcl.s φSV
5 prdsplusgsgrpcl.i φIW
6 prdsplusgsgrpcl.r Could not format ( ph -> R : I --> Smgrp ) : No typesetting found for |- ( ph -> R : I --> Smgrp ) with typecode |-
7 prdsplusgsgrpcl.f φFB
8 prdsplusgsgrpcl.g φGB
9 6 ffnd φRFnI
10 1 2 4 5 9 7 8 3 prdsplusgval φF+˙G=xIFx+RxGx
11 6 ffvelcdmda Could not format ( ( ph /\ x e. I ) -> ( R ` x ) e. Smgrp ) : No typesetting found for |- ( ( ph /\ x e. I ) -> ( R ` x ) e. Smgrp ) with typecode |-
12 4 adantr φxISV
13 5 adantr φxIIW
14 9 adantr φxIRFnI
15 7 adantr φxIFB
16 simpr φxIxI
17 1 2 12 13 14 15 16 prdsbasprj φxIFxBaseRx
18 8 adantr φxIGB
19 1 2 12 13 14 18 16 prdsbasprj φxIGxBaseRx
20 eqid BaseRx=BaseRx
21 eqid +Rx=+Rx
22 20 21 sgrpcl Could not format ( ( ( R ` x ) e. Smgrp /\ ( F ` x ) e. ( Base ` ( R ` x ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) : No typesetting found for |- ( ( ( R ` x ) e. Smgrp /\ ( F ` x ) e. ( Base ` ( R ` x ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) with typecode |-
23 11 17 19 22 syl3anc φxIFx+RxGxBaseRx
24 23 ralrimiva φxIFx+RxGxBaseRx
25 1 2 4 5 9 prdsbasmpt φxIFx+RxGxBxIFx+RxGxBaseRx
26 24 25 mpbird φxIFx+RxGxB
27 10 26 eqeltrd φF+˙GB