Metamath Proof Explorer


Theorem prdsxmslem1

Description: Lemma for prdsms . The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses prdsxms.y ⊒Y=S⨉𝑠R
prdsxms.s βŠ’Ο†β†’S∈W
prdsxms.i βŠ’Ο†β†’I∈Fin
prdsxms.d ⊒D=dist⁑Y
prdsxms.b ⊒B=BaseY
prdsxms.r βŠ’Ο†β†’R:I⟢∞MetSp
Assertion prdsxmslem1 βŠ’Ο†β†’D∈∞Met⁑B

Proof

Step Hyp Ref Expression
1 prdsxms.y ⊒Y=S⨉𝑠R
2 prdsxms.s βŠ’Ο†β†’S∈W
3 prdsxms.i βŠ’Ο†β†’I∈Fin
4 prdsxms.d ⊒D=dist⁑Y
5 prdsxms.b ⊒B=BaseY
6 prdsxms.r βŠ’Ο†β†’R:I⟢∞MetSp
7 eqid ⊒S⨉𝑠k∈I⟼R⁑k=S⨉𝑠k∈I⟼R⁑k
8 eqid ⊒BaseS⨉𝑠k∈I⟼R⁑k=BaseS⨉𝑠k∈I⟼R⁑k
9 eqid ⊒BaseR⁑k=BaseR⁑k
10 eqid ⊒dist⁑R⁑kβ†ΎBaseR⁑kΓ—BaseR⁑k=dist⁑R⁑kβ†ΎBaseR⁑kΓ—BaseR⁑k
11 eqid ⊒dist⁑S⨉𝑠k∈I⟼R⁑k=dist⁑S⨉𝑠k∈I⟼R⁑k
12 6 ffvelcdmda βŠ’Ο†βˆ§k∈Iβ†’R⁑k∈∞MetSp
13 9 10 xmsxmet ⊒R⁑k∈∞MetSpβ†’dist⁑R⁑kβ†ΎBaseR⁑kΓ—BaseR⁑k∈∞Met⁑BaseR⁑k
14 12 13 syl βŠ’Ο†βˆ§k∈Iβ†’dist⁑R⁑kβ†ΎBaseR⁑kΓ—BaseR⁑k∈∞Met⁑BaseR⁑k
15 7 8 9 10 11 2 3 12 14 prdsxmet βŠ’Ο†β†’dist⁑S⨉𝑠k∈I⟼R⁑k∈∞Met⁑BaseS⨉𝑠k∈I⟼R⁑k
16 6 feqmptd βŠ’Ο†β†’R=k∈I⟼R⁑k
17 16 oveq2d βŠ’Ο†β†’S⨉𝑠R=S⨉𝑠k∈I⟼R⁑k
18 1 17 eqtrid βŠ’Ο†β†’Y=S⨉𝑠k∈I⟼R⁑k
19 18 fveq2d βŠ’Ο†β†’dist⁑Y=dist⁑S⨉𝑠k∈I⟼R⁑k
20 4 19 eqtrid βŠ’Ο†β†’D=dist⁑S⨉𝑠k∈I⟼R⁑k
21 18 fveq2d βŠ’Ο†β†’BaseY=BaseS⨉𝑠k∈I⟼R⁑k
22 5 21 eqtrid βŠ’Ο†β†’B=BaseS⨉𝑠k∈I⟼R⁑k
23 22 fveq2d βŠ’Ο†β†’βˆžMet⁑B=∞Met⁑BaseS⨉𝑠k∈I⟼R⁑k
24 15 20 23 3eltr4d βŠ’Ο†β†’D∈∞Met⁑B