Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | predeq123 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |
|
2 | cnveq | |
|
3 | 2 | 3ad2ant1 | |
4 | sneq | |
|
5 | 4 | 3ad2ant3 | |
6 | 3 5 | imaeq12d | |
7 | 1 6 | ineq12d | |
8 | df-pred | |
|
9 | df-pred | |
|
10 | 7 8 9 | 3eqtr4g | |