Metamath Proof Explorer


Theorem predeq123

Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion predeq123 R=SA=BX=YPredRAX=PredSBY

Proof

Step Hyp Ref Expression
1 simp2 R=SA=BX=YA=B
2 cnveq R=SR-1=S-1
3 2 3ad2ant1 R=SA=BX=YR-1=S-1
4 sneq X=YX=Y
5 4 3ad2ant3 R=SA=BX=YX=Y
6 3 5 imaeq12d R=SA=BX=YR-1X=S-1Y
7 1 6 ineq12d R=SA=BX=YAR-1X=BS-1Y
8 df-pred PredRAX=AR-1X
9 df-pred PredSBY=BS-1Y
10 7 8 9 3eqtr4g R=SA=BX=YPredRAX=PredSBY