Metamath Proof Explorer


Theorem prednn

Description: The value of the predecessor class over the naturals. (Contributed by Scott Fenton, 6-Aug-2013)

Ref Expression
Assertion prednn NPred<N=1N1

Proof

Step Hyp Ref Expression
1 nnuz =1
2 predeq2 =1Pred<N=Pred<1N
3 1 2 ax-mp Pred<N=Pred<1N
4 elnnuz NN1
5 preduz N1Pred<1N=1N1
6 4 5 sylbi NPred<1N=1N1
7 3 6 eqtrid NPred<N=1N1