Metamath Proof Explorer


Theorem predpo

Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012) (Proof shortened by Scott Fenton, 28-Oct-2024)

Ref Expression
Assertion predpo RPoAXAYPredRAXPredRAYPredRAX

Proof

Step Hyp Ref Expression
1 dfpo2 RPoARIA=RA×ARA×AR
2 1 simprbi RPoARA×ARA×AR
3 2 ad2antrr RPoAXAYPredRAXRA×ARA×AR
4 simpr RPoAXAYPredRAXYPredRAX
5 simplr RPoAXAYPredRAXXA
6 predtrss RA×ARA×ARYPredRAXXAPredRAYPredRAX
7 3 4 5 6 syl3anc RPoAXAYPredRAXPredRAYPredRAX
8 7 ex RPoAXAYPredRAXPredRAYPredRAX