Metamath Proof Explorer


Theorem predpoirr

Description: Given a partial ordering, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011)

Ref Expression
Assertion predpoirr RPoA¬XPredRAX

Proof

Step Hyp Ref Expression
1 poirr RPoAXA¬XRX
2 elpredg XAXAXPredRAXXRX
3 2 anidms XAXPredRAXXRX
4 3 notbid XA¬XPredRAX¬XRX
5 1 4 imbitrrid XARPoAXA¬XPredRAX
6 5 expd XARPoAXA¬XPredRAX
7 6 pm2.43b RPoAXA¬XPredRAX
8 predel XPredRAXXA
9 8 con3i ¬XA¬XPredRAX
10 7 9 pm2.61d1 RPoA¬XPredRAX