Metamath Proof Explorer


Theorem preq12b

Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996)

Ref Expression
Hypotheses preqr1.a AV
preqr1.b BV
preq12b.c CV
preq12b.d DV
Assertion preq12b AB=CDA=CB=DA=DB=C

Proof

Step Hyp Ref Expression
1 preqr1.a AV
2 preqr1.b BV
3 preq12b.c CV
4 preq12b.d DV
5 1 prid1 AAB
6 eleq2 AB=CDAABACD
7 5 6 mpbii AB=CDACD
8 1 elpr ACDA=CA=D
9 7 8 sylib AB=CDA=CA=D
10 preq1 A=CAB=CB
11 10 eqeq1d A=CAB=CDCB=CD
12 2 4 preqr2 CB=CDB=D
13 11 12 syl6bi A=CAB=CDB=D
14 13 com12 AB=CDA=CB=D
15 14 ancld AB=CDA=CA=CB=D
16 prcom CD=DC
17 16 eqeq2i AB=CDAB=DC
18 preq1 A=DAB=DB
19 18 eqeq1d A=DAB=DCDB=DC
20 2 3 preqr2 DB=DCB=C
21 19 20 syl6bi A=DAB=DCB=C
22 21 com12 AB=DCA=DB=C
23 17 22 sylbi AB=CDA=DB=C
24 23 ancld AB=CDA=DA=DB=C
25 15 24 orim12d AB=CDA=CA=DA=CB=DA=DB=C
26 9 25 mpd AB=CDA=CB=DA=DB=C
27 preq12 A=CB=DAB=CD
28 preq12 A=DB=CAB=DC
29 prcom DC=CD
30 28 29 eqtrdi A=DB=CAB=CD
31 27 30 jaoi A=CB=DA=DB=CAB=CD
32 26 31 impbii AB=CDA=CB=DA=DB=C