Metamath Proof Explorer


Theorem pridlc3

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1 G=1stR
ispridlc.2 H=2ndR
ispridlc.3 X=ranG
Assertion pridlc3 RCRingOpsPPrIdlRAXPBXPAHBXP

Proof

Step Hyp Ref Expression
1 ispridlc.1 G=1stR
2 ispridlc.2 H=2ndR
3 ispridlc.3 X=ranG
4 crngorngo RCRingOpsRRingOps
5 eldifi AXPAX
6 eldifi BXPBX
7 5 6 anim12i AXPBXPAXBX
8 1 2 3 rngocl RRingOpsAXBXAHBX
9 8 3expb RRingOpsAXBXAHBX
10 4 7 9 syl2an RCRingOpsAXPBXPAHBX
11 10 adantlr RCRingOpsPPrIdlRAXPBXPAHBX
12 eldifn BXP¬BP
13 12 ad2antll RCRingOpsPPrIdlRAXPBXP¬BP
14 1 2 3 pridlc2 RCRingOpsPPrIdlRAXPBXAHBPBP
15 14 3exp2 RCRingOpsPPrIdlRAXPBXAHBPBP
16 15 imp32 RCRingOpsPPrIdlRAXPBXAHBPBP
17 16 con3d RCRingOpsPPrIdlRAXPBX¬BP¬AHBP
18 6 17 sylanr2 RCRingOpsPPrIdlRAXPBXP¬BP¬AHBP
19 13 18 mpd RCRingOpsPPrIdlRAXPBXP¬AHBP
20 11 19 eldifd RCRingOpsPPrIdlRAXPBXPAHBXP