Metamath Proof Explorer


Theorem primefld1cl

Description: The prime field contains the multiplicative neutral element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023)

Ref Expression
Hypothesis primefld1cl.1 1 ˙ = 1 R
Assertion primefld1cl R DivRing 1 ˙ SubDRing R

Proof

Step Hyp Ref Expression
1 primefld1cl.1 1 ˙ = 1 R
2 issdrg s SubDRing R R DivRing s SubRing R R 𝑠 s DivRing
3 2 simp2bi s SubDRing R s SubRing R
4 3 a1i R DivRing s SubDRing R s SubRing R
5 4 ssrdv R DivRing SubDRing R SubRing R
6 eqid Base R = Base R
7 6 sdrgid R DivRing Base R SubDRing R
8 7 ne0d R DivRing SubDRing R
9 subrgint SubDRing R SubRing R SubDRing R SubDRing R SubRing R
10 5 8 9 syl2anc R DivRing SubDRing R SubRing R
11 1 subrg1cl SubDRing R SubRing R 1 ˙ SubDRing R
12 10 11 syl R DivRing 1 ˙ SubDRing R