Metamath Proof Explorer


Theorem primefldchr

Description: The characteristic of a prime field is the same as the characteristic of the main field. (Contributed by Thierry Arnoux, 21-Aug-2023)

Ref Expression
Hypothesis primefldchr.1 P = R 𝑠 SubDRing R
Assertion primefldchr R DivRing chr P = chr R

Proof

Step Hyp Ref Expression
1 primefldchr.1 P = R 𝑠 SubDRing R
2 1 fveq2i chr P = chr R 𝑠 SubDRing R
3 issdrg s SubDRing R R DivRing s SubRing R R 𝑠 s DivRing
4 3 simp2bi s SubDRing R s SubRing R
5 4 ssriv SubDRing R SubRing R
6 eqid Base R = Base R
7 6 sdrgid R DivRing Base R SubDRing R
8 7 ne0d R DivRing SubDRing R
9 subrgint SubDRing R SubRing R SubDRing R SubDRing R SubRing R
10 5 8 9 sylancr R DivRing SubDRing R SubRing R
11 subrgchr SubDRing R SubRing R chr R 𝑠 SubDRing R = chr R
12 10 11 syl R DivRing chr R 𝑠 SubDRing R = chr R
13 2 12 syl5eq R DivRing chr P = chr R