Step |
Hyp |
Ref |
Expression |
1 |
|
primefldchr.1 |
⊢ 𝑃 = ( 𝑅 ↾s ∩ ( SubDRing ‘ 𝑅 ) ) |
2 |
1
|
fveq2i |
⊢ ( chr ‘ 𝑃 ) = ( chr ‘ ( 𝑅 ↾s ∩ ( SubDRing ‘ 𝑅 ) ) ) |
3 |
|
issdrg |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝑠 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝑠 ) ∈ DivRing ) ) |
4 |
3
|
simp2bi |
⊢ ( 𝑠 ∈ ( SubDRing ‘ 𝑅 ) → 𝑠 ∈ ( SubRing ‘ 𝑅 ) ) |
5 |
4
|
ssriv |
⊢ ( SubDRing ‘ 𝑅 ) ⊆ ( SubRing ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
6
|
sdrgid |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑅 ) ∈ ( SubDRing ‘ 𝑅 ) ) |
8 |
7
|
ne0d |
⊢ ( 𝑅 ∈ DivRing → ( SubDRing ‘ 𝑅 ) ≠ ∅ ) |
9 |
|
subrgint |
⊢ ( ( ( SubDRing ‘ 𝑅 ) ⊆ ( SubRing ‘ 𝑅 ) ∧ ( SubDRing ‘ 𝑅 ) ≠ ∅ ) → ∩ ( SubDRing ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
10 |
5 8 9
|
sylancr |
⊢ ( 𝑅 ∈ DivRing → ∩ ( SubDRing ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
11 |
|
subrgchr |
⊢ ( ∩ ( SubDRing ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) → ( chr ‘ ( 𝑅 ↾s ∩ ( SubDRing ‘ 𝑅 ) ) ) = ( chr ‘ 𝑅 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( chr ‘ ( 𝑅 ↾s ∩ ( SubDRing ‘ 𝑅 ) ) ) = ( chr ‘ 𝑅 ) ) |
13 |
2 12
|
eqtrid |
⊢ ( 𝑅 ∈ DivRing → ( chr ‘ 𝑃 ) = ( chr ‘ 𝑅 ) ) |