Metamath Proof Explorer


Theorem prmdvdssqOLD

Description: Obsolete version of prmdvdssq as of 21-Aug-2024. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion prmdvdssqOLD PMPMPM2

Proof

Step Hyp Ref Expression
1 zcn MM
2 1 sqvald MM2= M M
3 2 breq2d MPM2P M M
4 3 adantl PMPM2P M M
5 euclemma PMMP M MPMPM
6 5 3anidm23 PMP M MPMPM
7 oridm PMPMPM
8 6 7 bitrdi PMP M MPM
9 4 8 bitr2d PMPMPM2