Metamath Proof Explorer


Theorem prodeq2sdv

Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017) Avoid axioms. (Revised by GG, 1-Sep-2025)

Ref Expression
Hypothesis prodeq2sdv.1 φ B = C
Assertion prodeq2sdv φ k A B = k A C

Proof

Step Hyp Ref Expression
1 prodeq2sdv.1 φ B = C
2 1 ifeq1d φ if k A B 1 = if k A C 1
3 2 mpteq2dv φ k if k A B 1 = k if k A C 1
4 3 seqeq3d φ seq n × k if k A B 1 = seq n × k if k A C 1
5 4 breq1d φ seq n × k if k A B 1 y seq n × k if k A C 1 y
6 5 anbi2d φ y 0 seq n × k if k A B 1 y y 0 seq n × k if k A C 1 y
7 6 exbidv φ y y 0 seq n × k if k A B 1 y y y 0 seq n × k if k A C 1 y
8 7 rexbidv φ n m y y 0 seq n × k if k A B 1 y n m y y 0 seq n × k if k A C 1 y
9 3 seqeq3d φ seq m × k if k A B 1 = seq m × k if k A C 1
10 9 breq1d φ seq m × k if k A B 1 x seq m × k if k A C 1 x
11 8 10 3anbi23d φ A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
12 11 rexbidv φ m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
13 1 csbeq2dv φ f n / k B = f n / k C
14 13 mpteq2dv φ n f n / k B = n f n / k C
15 14 seqeq3d φ seq 1 × n f n / k B = seq 1 × n f n / k C
16 15 fveq1d φ seq 1 × n f n / k B m = seq 1 × n f n / k C m
17 16 eqeq2d φ x = seq 1 × n f n / k B m x = seq 1 × n f n / k C m
18 17 anbi2d φ f : 1 m 1-1 onto A x = seq 1 × n f n / k B m f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
19 18 exbidv φ f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
20 19 rexbidv φ m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
21 12 20 orbi12d φ m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
22 21 iotabidv φ ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
23 df-prod k A B = ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
24 df-prod k A C = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
25 22 23 24 3eqtr4g φ k A B = k A C