Metamath Proof Explorer


Theorem prodf1

Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypothesis prodf1.1 Z=M
Assertion prodf1 NZseqM×Z×1N=1

Proof

Step Hyp Ref Expression
1 prodf1.1 Z=M
2 1t1e1 11=1
3 2 a1i NZ11=1
4 1 eleq2i NZNM
5 4 biimpi NZNM
6 ax-1cn 1
7 elfzuz kMNkM
8 7 1 eleqtrrdi kMNkZ
9 8 adantl NZkMNkZ
10 fvconst2g 1kZZ×1k=1
11 6 9 10 sylancr NZkMNZ×1k=1
12 3 5 11 seqid3 NZseqM×Z×1N=1