Metamath Proof Explorer


Theorem propssopi

Description: If a pair of ordered pairs is a subset of an ordered pair, their first components are equal. (Contributed by AV, 20-Sep-2020) (Proof shortened by AV, 16-Jun-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses snopeqop.a A V
snopeqop.b B V
propeqop.c C V
propeqop.d D V
propeqop.e E V
propeqop.f F V
Assertion propssopi A B C D E F A = C

Proof

Step Hyp Ref Expression
1 snopeqop.a A V
2 snopeqop.b B V
3 propeqop.c C V
4 propeqop.d D V
5 propeqop.e E V
6 propeqop.f F V
7 5 6 dfop E F = E E F
8 7 sseq2i A B C D E F A B C D E E F
9 sspr A B C D E E F A B C D = A B C D = E A B C D = E F A B C D = E E F
10 opex A B V
11 10 prnz A B C D
12 eqneqall A B C D = A B C D A = C
13 11 12 mpi A B C D = A = C
14 opex C D V
15 10 14 preqsn A B C D = E A B = C D C D = E
16 1 2 opth A B = C D A = C B = D
17 simpl A = C B = D A = C
18 16 17 sylbi A B = C D A = C
19 18 adantr A B = C D C D = E A = C
20 15 19 sylbi A B C D = E A = C
21 13 20 jaoi A B C D = A B C D = E A = C
22 10 14 preqsn A B C D = E F A B = C D C D = E F
23 17 a1d A = C B = D C D = E F A = C
24 16 23 sylbi A B = C D C D = E F A = C
25 24 imp A B = C D C D = E F A = C
26 22 25 sylbi A B C D = E F A = C
27 7 eqcomi E E F = E F
28 27 eqeq2i A B C D = E E F A B C D = E F
29 1 2 3 4 5 6 propeqop A B C D = E F A = C E = A A = B F = A D A = D F = A B
30 28 29 bitri A B C D = E E F A = C E = A A = B F = A D A = D F = A B
31 simpll A = C E = A A = B F = A D A = D F = A B A = C
32 30 31 sylbi A B C D = E E F A = C
33 26 32 jaoi A B C D = E F A B C D = E E F A = C
34 21 33 jaoi A B C D = A B C D = E A B C D = E F A B C D = E E F A = C
35 9 34 sylbi A B C D E E F A = C
36 8 35 sylbi A B C D E F A = C