Metamath Proof Explorer


Theorem prprelb

Description: An element of the set of all proper unordered pairs over a given set V is a subset of V of size two. (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion prprelb VWPPrPairsVP𝒫VP=2

Proof

Step Hyp Ref Expression
1 prprvalpw VWPrPairsV=p𝒫V|aVbVabp=ab
2 1 eleq2d VWPPrPairsVPp𝒫V|aVbVabp=ab
3 eqeq1 p=Pp=abP=ab
4 3 anbi2d p=Pabp=ababP=ab
5 4 2rexbidv p=PaVbVabp=abaVbVabP=ab
6 5 elrab Pp𝒫V|aVbVabp=abP𝒫VaVbVabP=ab
7 2 6 bitrdi VWPPrPairsVP𝒫VaVbVabP=ab
8 hash2exprb P𝒫VP=2ababP=ab
9 eleq1 P=abP𝒫Vab𝒫V
10 prelpw aVbVaVbVab𝒫V
11 10 el2v aVbVab𝒫V
12 11 biimpri ab𝒫VaVbV
13 9 12 syl6bi P=abP𝒫VaVbV
14 13 com12 P𝒫VP=abaVbV
15 14 adantld P𝒫VabP=abaVbV
16 15 pm4.71rd P𝒫VabP=abaVbVabP=ab
17 16 2exbidv P𝒫VababP=ababaVbVabP=ab
18 r2ex aVbVabP=ababaVbVabP=ab
19 17 18 bitr4di P𝒫VababP=abaVbVabP=ab
20 8 19 bitr2d P𝒫VaVbVabP=abP=2
21 20 pm5.32i P𝒫VaVbVabP=abP𝒫VP=2
22 7 21 bitrdi VWPPrPairsVP𝒫VP=2