Description: For an element of a proper unordered pair of elements of a class V , there is another (different) element of the class V which is an element of the proper pair. (Contributed by AV, 18-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | prproe | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri | |
|
2 | simprrr | |
|
3 | necom | |
|
4 | neeq2 | |
|
5 | 4 | eqcoms | |
6 | 5 | biimpcd | |
7 | 3 6 | sylbi | |
8 | 7 | adantr | |
9 | 8 | impcom | |
10 | eldifsn | |
|
11 | 2 9 10 | sylanbrc | |
12 | eleq1 | |
|
13 | 12 | adantl | |
14 | prid2g | |
|
15 | 14 | adantl | |
16 | 15 | adantl | |
17 | 16 | adantl | |
18 | 11 13 17 | rspcedvd | |
19 | 18 | ex | |
20 | simprrl | |
|
21 | neeq2 | |
|
22 | 21 | eqcoms | |
23 | 22 | biimpcd | |
24 | 23 | adantr | |
25 | 24 | impcom | |
26 | eldifsn | |
|
27 | 20 25 26 | sylanbrc | |
28 | eleq1 | |
|
29 | 28 | adantl | |
30 | prid1g | |
|
31 | 30 | adantr | |
32 | 31 | adantl | |
33 | 32 | adantl | |
34 | 27 29 33 | rspcedvd | |
35 | 34 | ex | |
36 | 19 35 | jaoi | |
37 | 1 36 | syl | |
38 | 37 | 3impib | |