Metamath Proof Explorer


Theorem prproe

Description: For an element of a proper unordered pair of elements of a class V , there is another (different) element of the class V which is an element of the proper pair. (Contributed by AV, 18-Dec-2021)

Ref Expression
Assertion prproe CABABAVBVvVCvAB

Proof

Step Hyp Ref Expression
1 elpri CABC=AC=B
2 simprrr C=AABAVBVBV
3 necom ABBA
4 neeq2 A=CBABC
5 4 eqcoms C=ABABC
6 5 biimpcd BAC=ABC
7 3 6 sylbi ABC=ABC
8 7 adantr ABAVBVC=ABC
9 8 impcom C=AABAVBVBC
10 eldifsn BVCBVBC
11 2 9 10 sylanbrc C=AABAVBVBVC
12 eleq1 v=BvABBAB
13 12 adantl C=AABAVBVv=BvABBAB
14 prid2g BVBAB
15 14 adantl AVBVBAB
16 15 adantl ABAVBVBAB
17 16 adantl C=AABAVBVBAB
18 11 13 17 rspcedvd C=AABAVBVvVCvAB
19 18 ex C=AABAVBVvVCvAB
20 simprrl C=BABAVBVAV
21 neeq2 B=CABAC
22 21 eqcoms C=BABAC
23 22 biimpcd ABC=BAC
24 23 adantr ABAVBVC=BAC
25 24 impcom C=BABAVBVAC
26 eldifsn AVCAVAC
27 20 25 26 sylanbrc C=BABAVBVAVC
28 eleq1 v=AvABAAB
29 28 adantl C=BABAVBVv=AvABAAB
30 prid1g AVAAB
31 30 adantr AVBVAAB
32 31 adantl ABAVBVAAB
33 32 adantl C=BABAVBVAAB
34 27 29 33 rspcedvd C=BABAVBVvVCvAB
35 34 ex C=BABAVBVvVCvAB
36 19 35 jaoi C=AC=BABAVBVvVCvAB
37 1 36 syl CABABAVBVvVCvAB
38 37 3impib CABABAVBVvVCvAB