Metamath Proof Explorer


Theorem prproe

Description: For an element of a proper unordered pair of elements of a class V , there is another (different) element of the class V which is an element of the proper pair. (Contributed by AV, 18-Dec-2021)

Ref Expression
Assertion prproe C A B A B A V B V v V C v A B

Proof

Step Hyp Ref Expression
1 elpri C A B C = A C = B
2 simprrr C = A A B A V B V B V
3 necom A B B A
4 neeq2 A = C B A B C
5 4 eqcoms C = A B A B C
6 5 biimpcd B A C = A B C
7 3 6 sylbi A B C = A B C
8 7 adantr A B A V B V C = A B C
9 8 impcom C = A A B A V B V B C
10 eldifsn B V C B V B C
11 2 9 10 sylanbrc C = A A B A V B V B V C
12 eleq1 v = B v A B B A B
13 12 adantl C = A A B A V B V v = B v A B B A B
14 prid2g B V B A B
15 14 adantl A V B V B A B
16 15 adantl A B A V B V B A B
17 16 adantl C = A A B A V B V B A B
18 11 13 17 rspcedvd C = A A B A V B V v V C v A B
19 18 ex C = A A B A V B V v V C v A B
20 simprrl C = B A B A V B V A V
21 neeq2 B = C A B A C
22 21 eqcoms C = B A B A C
23 22 biimpcd A B C = B A C
24 23 adantr A B A V B V C = B A C
25 24 impcom C = B A B A V B V A C
26 eldifsn A V C A V A C
27 20 25 26 sylanbrc C = B A B A V B V A V C
28 eleq1 v = A v A B A A B
29 28 adantl C = B A B A V B V v = A v A B A A B
30 prid1g A V A A B
31 30 adantr A V B V A A B
32 31 adantl A B A V B V A A B
33 32 adantl C = B A B A V B V A A B
34 27 29 33 rspcedvd C = B A B A V B V v V C v A B
35 34 ex C = B A B A V B V v V C v A B
36 19 35 jaoi C = A C = B A B A V B V v V C v A B
37 1 36 syl C A B A B A V B V v V C v A B
38 37 3impib C A B A B A V B V v V C v A B