Metamath Proof Explorer


Theorem prproropf1olem1

Description: Lemma 1 for prproropf1o . (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses prproropf1o.o O=RV×V
prproropf1o.p P=p𝒫V|p=2
Assertion prproropf1olem1 ROrVWO1stW2ndWP

Proof

Step Hyp Ref Expression
1 prproropf1o.o O=RV×V
2 prproropf1o.p P=p𝒫V|p=2
3 1 prproropf1olem0 WOW=1stW2ndW1stWV2ndWV1stWR2ndW
4 simpr2 ROrVW=1stW2ndW1stWV2ndWV1stWR2ndW1stWV2ndWV
5 prelpwi 1stWV2ndWV1stW2ndW𝒫V
6 4 5 syl ROrVW=1stW2ndW1stWV2ndWV1stWR2ndW1stW2ndW𝒫V
7 sopo ROrVRPoV
8 7 adantr ROrVW=1stW2ndW1stWV2ndWV1stWR2ndWRPoV
9 simpr3 ROrVW=1stW2ndW1stWV2ndWV1stWR2ndW1stWR2ndW
10 po2ne RPoV1stWV2ndWV1stWR2ndW1stW2ndW
11 8 4 9 10 syl3anc ROrVW=1stW2ndW1stWV2ndWV1stWR2ndW1stW2ndW
12 fvex 1stWV
13 fvex 2ndWV
14 hashprg 1stWV2ndWV1stW2ndW1stW2ndW=2
15 12 13 14 mp2an 1stW2ndW1stW2ndW=2
16 11 15 sylib ROrVW=1stW2ndW1stWV2ndWV1stWR2ndW1stW2ndW=2
17 6 16 jca ROrVW=1stW2ndW1stWV2ndWV1stWR2ndW1stW2ndW𝒫V1stW2ndW=2
18 3 17 sylan2b ROrVWO1stW2ndW𝒫V1stW2ndW=2
19 fveqeq2 p=1stW2ndWp=21stW2ndW=2
20 19 2 elrab2 1stW2ndWP1stW2ndW𝒫V1stW2ndW=2
21 18 20 sylibr ROrVWO1stW2ndWP