Metamath Proof Explorer


Theorem prproropf1olem1

Description: Lemma 1 for prproropf1o . (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses prproropf1o.o O = R V × V
prproropf1o.p P = p 𝒫 V | p = 2
Assertion prproropf1olem1 R Or V W O 1 st W 2 nd W P

Proof

Step Hyp Ref Expression
1 prproropf1o.o O = R V × V
2 prproropf1o.p P = p 𝒫 V | p = 2
3 1 prproropf1olem0 W O W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W
4 simpr2 R Or V W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W 1 st W V 2 nd W V
5 prelpwi 1 st W V 2 nd W V 1 st W 2 nd W 𝒫 V
6 4 5 syl R Or V W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W 1 st W 2 nd W 𝒫 V
7 sopo R Or V R Po V
8 7 adantr R Or V W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W R Po V
9 simpr3 R Or V W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W 1 st W R 2 nd W
10 po2ne R Po V 1 st W V 2 nd W V 1 st W R 2 nd W 1 st W 2 nd W
11 8 4 9 10 syl3anc R Or V W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W 1 st W 2 nd W
12 fvex 1 st W V
13 fvex 2 nd W V
14 hashprg 1 st W V 2 nd W V 1 st W 2 nd W 1 st W 2 nd W = 2
15 12 13 14 mp2an 1 st W 2 nd W 1 st W 2 nd W = 2
16 11 15 sylib R Or V W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W 1 st W 2 nd W = 2
17 6 16 jca R Or V W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W 1 st W 2 nd W 𝒫 V 1 st W 2 nd W = 2
18 3 17 sylan2b R Or V W O 1 st W 2 nd W 𝒫 V 1 st W 2 nd W = 2
19 fveqeq2 p = 1 st W 2 nd W p = 2 1 st W 2 nd W = 2
20 19 2 elrab2 1 st W 2 nd W P 1 st W 2 nd W 𝒫 V 1 st W 2 nd W = 2
21 18 20 sylibr R Or V W O 1 st W 2 nd W P