Metamath Proof Explorer


Theorem prproropf1olem2

Description: Lemma 2 for prproropf1o . (Contributed by AV, 13-Mar-2023)

Ref Expression
Hypotheses prproropf1o.o O = R V × V
prproropf1o.p P = p 𝒫 V | p = 2
Assertion prproropf1olem2 R Or V X P sup X V R sup X V R O

Proof

Step Hyp Ref Expression
1 prproropf1o.o O = R V × V
2 prproropf1o.p P = p 𝒫 V | p = 2
3 2 prpair X P a V b V X = a b a b
4 simpll R Or V a V b V X = a b a b R Or V
5 simplrl R Or V a V b V X = a b a b a V
6 simplrr R Or V a V b V X = a b a b b V
7 simprr R Or V a V b V X = a b a b a b
8 infsupprpr R Or V a V b V a b sup a b V R R sup a b V R
9 4 5 6 7 8 syl13anc R Or V a V b V X = a b a b sup a b V R R sup a b V R
10 df-br sup a b V R R sup a b V R sup a b V R sup a b V R R
11 9 10 sylib R Or V a V b V X = a b a b sup a b V R sup a b V R R
12 infpr R Or V a V b V sup a b V R = if a R b a b
13 ifcl a V b V if a R b a b V
14 13 3adant1 R Or V a V b V if a R b a b V
15 12 14 eqeltrd R Or V a V b V sup a b V R V
16 suppr R Or V a V b V sup a b V R = if b R a a b
17 ifcl a V b V if b R a a b V
18 17 3adant1 R Or V a V b V if b R a a b V
19 16 18 eqeltrd R Or V a V b V sup a b V R V
20 15 19 jca R Or V a V b V sup a b V R V sup a b V R V
21 20 3expb R Or V a V b V sup a b V R V sup a b V R V
22 21 adantr R Or V a V b V X = a b a b sup a b V R V sup a b V R V
23 opelxp sup a b V R sup a b V R V × V sup a b V R V sup a b V R V
24 22 23 sylibr R Or V a V b V X = a b a b sup a b V R sup a b V R V × V
25 11 24 elind R Or V a V b V X = a b a b sup a b V R sup a b V R R V × V
26 infeq1 X = a b sup X V R = sup a b V R
27 supeq1 X = a b sup X V R = sup a b V R
28 26 27 opeq12d X = a b sup X V R sup X V R = sup a b V R sup a b V R
29 28 eleq1d X = a b sup X V R sup X V R R V × V sup a b V R sup a b V R R V × V
30 29 ad2antrl R Or V a V b V X = a b a b sup X V R sup X V R R V × V sup a b V R sup a b V R R V × V
31 25 30 mpbird R Or V a V b V X = a b a b sup X V R sup X V R R V × V
32 31 ex R Or V a V b V X = a b a b sup X V R sup X V R R V × V
33 32 rexlimdvva R Or V a V b V X = a b a b sup X V R sup X V R R V × V
34 3 33 syl5bi R Or V X P sup X V R sup X V R R V × V
35 34 imp R Or V X P sup X V R sup X V R R V × V
36 35 1 eleqtrrdi R Or V X P sup X V R sup X V R O