| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prproropf1o.o |  | 
						
							| 2 |  | prproropf1o.p |  | 
						
							| 3 | 2 | prpair |  | 
						
							| 4 |  | simpll |  | 
						
							| 5 |  | simplrl |  | 
						
							| 6 |  | simplrr |  | 
						
							| 7 |  | simprr |  | 
						
							| 8 |  | infsupprpr |  | 
						
							| 9 | 4 5 6 7 8 | syl13anc |  | 
						
							| 10 |  | df-br |  | 
						
							| 11 | 9 10 | sylib |  | 
						
							| 12 |  | infpr |  | 
						
							| 13 |  | ifcl |  | 
						
							| 14 | 13 | 3adant1 |  | 
						
							| 15 | 12 14 | eqeltrd |  | 
						
							| 16 |  | suppr |  | 
						
							| 17 |  | ifcl |  | 
						
							| 18 | 17 | 3adant1 |  | 
						
							| 19 | 16 18 | eqeltrd |  | 
						
							| 20 | 15 19 | jca |  | 
						
							| 21 | 20 | 3expb |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | opelxp |  | 
						
							| 24 | 22 23 | sylibr |  | 
						
							| 25 | 11 24 | elind |  | 
						
							| 26 |  | infeq1 |  | 
						
							| 27 |  | supeq1 |  | 
						
							| 28 | 26 27 | opeq12d |  | 
						
							| 29 | 28 | eleq1d |  | 
						
							| 30 | 29 | ad2antrl |  | 
						
							| 31 | 25 30 | mpbird |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 32 | rexlimdvva |  | 
						
							| 34 | 3 33 | biimtrid |  | 
						
							| 35 | 34 | imp |  | 
						
							| 36 | 35 1 | eleqtrrdi |  |