| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prproropf1o.o |
|
| 2 |
|
prproropf1o.p |
|
| 3 |
2
|
prpair |
|
| 4 |
|
simpll |
|
| 5 |
|
simplrl |
|
| 6 |
|
simplrr |
|
| 7 |
|
simprr |
|
| 8 |
|
infsupprpr |
|
| 9 |
4 5 6 7 8
|
syl13anc |
|
| 10 |
|
df-br |
|
| 11 |
9 10
|
sylib |
|
| 12 |
|
infpr |
|
| 13 |
|
ifcl |
|
| 14 |
13
|
3adant1 |
|
| 15 |
12 14
|
eqeltrd |
|
| 16 |
|
suppr |
|
| 17 |
|
ifcl |
|
| 18 |
17
|
3adant1 |
|
| 19 |
16 18
|
eqeltrd |
|
| 20 |
15 19
|
jca |
|
| 21 |
20
|
3expb |
|
| 22 |
21
|
adantr |
|
| 23 |
|
opelxp |
|
| 24 |
22 23
|
sylibr |
|
| 25 |
11 24
|
elind |
|
| 26 |
|
infeq1 |
|
| 27 |
|
supeq1 |
|
| 28 |
26 27
|
opeq12d |
|
| 29 |
28
|
eleq1d |
|
| 30 |
29
|
ad2antrl |
|
| 31 |
25 30
|
mpbird |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
rexlimdvva |
|
| 34 |
3 33
|
biimtrid |
|
| 35 |
34
|
imp |
|
| 36 |
35 1
|
eleqtrrdi |
|