Metamath Proof Explorer


Theorem prproropf1olem3

Description: Lemma 3 for prproropf1o . (Contributed by AV, 13-Mar-2023)

Ref Expression
Hypotheses prproropf1o.o O = R V × V
prproropf1o.p P = p 𝒫 V | p = 2
prproropf1o.f F = p P sup p V R sup p V R
Assertion prproropf1olem3 R Or V W O F 1 st W 2 nd W = 1 st W 2 nd W

Proof

Step Hyp Ref Expression
1 prproropf1o.o O = R V × V
2 prproropf1o.p P = p 𝒫 V | p = 2
3 prproropf1o.f F = p P sup p V R sup p V R
4 infeq1 p = 1 st W 2 nd W sup p V R = sup 1 st W 2 nd W V R
5 supeq1 p = 1 st W 2 nd W sup p V R = sup 1 st W 2 nd W V R
6 4 5 opeq12d p = 1 st W 2 nd W sup p V R sup p V R = sup 1 st W 2 nd W V R sup 1 st W 2 nd W V R
7 1 prproropf1olem0 W O W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W
8 simpl R Or V 1 st W V 2 nd W V 1 st W R 2 nd W R Or V
9 simprll R Or V 1 st W V 2 nd W V 1 st W R 2 nd W 1 st W V
10 simprlr R Or V 1 st W V 2 nd W V 1 st W R 2 nd W 2 nd W V
11 infpr R Or V 1 st W V 2 nd W V sup 1 st W 2 nd W V R = if 1 st W R 2 nd W 1 st W 2 nd W
12 8 9 10 11 syl3anc R Or V 1 st W V 2 nd W V 1 st W R 2 nd W sup 1 st W 2 nd W V R = if 1 st W R 2 nd W 1 st W 2 nd W
13 iftrue 1 st W R 2 nd W if 1 st W R 2 nd W 1 st W 2 nd W = 1 st W
14 13 ad2antll R Or V 1 st W V 2 nd W V 1 st W R 2 nd W if 1 st W R 2 nd W 1 st W 2 nd W = 1 st W
15 12 14 eqtrd R Or V 1 st W V 2 nd W V 1 st W R 2 nd W sup 1 st W 2 nd W V R = 1 st W
16 suppr R Or V 1 st W V 2 nd W V sup 1 st W 2 nd W V R = if 2 nd W R 1 st W 1 st W 2 nd W
17 8 9 10 16 syl3anc R Or V 1 st W V 2 nd W V 1 st W R 2 nd W sup 1 st W 2 nd W V R = if 2 nd W R 1 st W 1 st W 2 nd W
18 soasym R Or V 1 st W V 2 nd W V 1 st W R 2 nd W ¬ 2 nd W R 1 st W
19 18 impr R Or V 1 st W V 2 nd W V 1 st W R 2 nd W ¬ 2 nd W R 1 st W
20 19 iffalsed R Or V 1 st W V 2 nd W V 1 st W R 2 nd W if 2 nd W R 1 st W 1 st W 2 nd W = 2 nd W
21 17 20 eqtrd R Or V 1 st W V 2 nd W V 1 st W R 2 nd W sup 1 st W 2 nd W V R = 2 nd W
22 15 21 opeq12d R Or V 1 st W V 2 nd W V 1 st W R 2 nd W sup 1 st W 2 nd W V R sup 1 st W 2 nd W V R = 1 st W 2 nd W
23 22 3adantr1 R Or V W = 1 st W 2 nd W 1 st W V 2 nd W V 1 st W R 2 nd W sup 1 st W 2 nd W V R sup 1 st W 2 nd W V R = 1 st W 2 nd W
24 7 23 sylan2b R Or V W O sup 1 st W 2 nd W V R sup 1 st W 2 nd W V R = 1 st W 2 nd W
25 6 24 sylan9eqr R Or V W O p = 1 st W 2 nd W sup p V R sup p V R = 1 st W 2 nd W
26 1 2 prproropf1olem1 R Or V W O 1 st W 2 nd W P
27 opex 1 st W 2 nd W V
28 27 a1i R Or V W O 1 st W 2 nd W V
29 3 25 26 28 fvmptd2 R Or V W O F 1 st W 2 nd W = 1 st W 2 nd W