Metamath Proof Explorer


Theorem prproropf1olem3

Description: Lemma 3 for prproropf1o . (Contributed by AV, 13-Mar-2023)

Ref Expression
Hypotheses prproropf1o.o 𝑂 = ( 𝑅 ∩ ( 𝑉 × 𝑉 ) )
prproropf1o.p 𝑃 = { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 }
prproropf1o.f 𝐹 = ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ )
Assertion prproropf1olem3 ( ( 𝑅 Or 𝑉𝑊𝑂 ) → ( 𝐹 ‘ { ( 1st𝑊 ) , ( 2nd𝑊 ) } ) = ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ )

Proof

Step Hyp Ref Expression
1 prproropf1o.o 𝑂 = ( 𝑅 ∩ ( 𝑉 × 𝑉 ) )
2 prproropf1o.p 𝑃 = { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 }
3 prproropf1o.f 𝐹 = ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ )
4 infeq1 ( 𝑝 = { ( 1st𝑊 ) , ( 2nd𝑊 ) } → inf ( 𝑝 , 𝑉 , 𝑅 ) = inf ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) )
5 supeq1 ( 𝑝 = { ( 1st𝑊 ) , ( 2nd𝑊 ) } → sup ( 𝑝 , 𝑉 , 𝑅 ) = sup ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) )
6 4 5 opeq12d ( 𝑝 = { ( 1st𝑊 ) , ( 2nd𝑊 ) } → ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ = ⟨ inf ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) , sup ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) ⟩ )
7 1 prproropf1olem0 ( 𝑊𝑂 ↔ ( 𝑊 = ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ ∧ ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) )
8 simpl ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → 𝑅 Or 𝑉 )
9 simprll ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → ( 1st𝑊 ) ∈ 𝑉 )
10 simprlr ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → ( 2nd𝑊 ) ∈ 𝑉 )
11 infpr ( ( 𝑅 Or 𝑉 ∧ ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) → inf ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) = if ( ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) , ( 1st𝑊 ) , ( 2nd𝑊 ) ) )
12 8 9 10 11 syl3anc ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → inf ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) = if ( ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) , ( 1st𝑊 ) , ( 2nd𝑊 ) ) )
13 iftrue ( ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) → if ( ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) , ( 1st𝑊 ) , ( 2nd𝑊 ) ) = ( 1st𝑊 ) )
14 13 ad2antll ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → if ( ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) , ( 1st𝑊 ) , ( 2nd𝑊 ) ) = ( 1st𝑊 ) )
15 12 14 eqtrd ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → inf ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) = ( 1st𝑊 ) )
16 suppr ( ( 𝑅 Or 𝑉 ∧ ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) → sup ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) = if ( ( 2nd𝑊 ) 𝑅 ( 1st𝑊 ) , ( 1st𝑊 ) , ( 2nd𝑊 ) ) )
17 8 9 10 16 syl3anc ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → sup ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) = if ( ( 2nd𝑊 ) 𝑅 ( 1st𝑊 ) , ( 1st𝑊 ) , ( 2nd𝑊 ) ) )
18 soasym ( ( 𝑅 Or 𝑉 ∧ ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ) → ( ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) → ¬ ( 2nd𝑊 ) 𝑅 ( 1st𝑊 ) ) )
19 18 impr ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → ¬ ( 2nd𝑊 ) 𝑅 ( 1st𝑊 ) )
20 19 iffalsed ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → if ( ( 2nd𝑊 ) 𝑅 ( 1st𝑊 ) , ( 1st𝑊 ) , ( 2nd𝑊 ) ) = ( 2nd𝑊 ) )
21 17 20 eqtrd ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → sup ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) = ( 2nd𝑊 ) )
22 15 21 opeq12d ( ( 𝑅 Or 𝑉 ∧ ( ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → ⟨ inf ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) , sup ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) ⟩ = ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ )
23 22 3adantr1 ( ( 𝑅 Or 𝑉 ∧ ( 𝑊 = ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ ∧ ( ( 1st𝑊 ) ∈ 𝑉 ∧ ( 2nd𝑊 ) ∈ 𝑉 ) ∧ ( 1st𝑊 ) 𝑅 ( 2nd𝑊 ) ) ) → ⟨ inf ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) , sup ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) ⟩ = ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ )
24 7 23 sylan2b ( ( 𝑅 Or 𝑉𝑊𝑂 ) → ⟨ inf ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) , sup ( { ( 1st𝑊 ) , ( 2nd𝑊 ) } , 𝑉 , 𝑅 ) ⟩ = ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ )
25 6 24 sylan9eqr ( ( ( 𝑅 Or 𝑉𝑊𝑂 ) ∧ 𝑝 = { ( 1st𝑊 ) , ( 2nd𝑊 ) } ) → ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ = ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ )
26 1 2 prproropf1olem1 ( ( 𝑅 Or 𝑉𝑊𝑂 ) → { ( 1st𝑊 ) , ( 2nd𝑊 ) } ∈ 𝑃 )
27 opex ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ ∈ V
28 27 a1i ( ( 𝑅 Or 𝑉𝑊𝑂 ) → ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ ∈ V )
29 3 25 26 28 fvmptd2 ( ( 𝑅 Or 𝑉𝑊𝑂 ) → ( 𝐹 ‘ { ( 1st𝑊 ) , ( 2nd𝑊 ) } ) = ⟨ ( 1st𝑊 ) , ( 2nd𝑊 ) ⟩ )