| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prproropf1o.o |
⊢ 𝑂 = ( 𝑅 ∩ ( 𝑉 × 𝑉 ) ) |
| 2 |
|
prproropf1o.p |
⊢ 𝑃 = { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 } |
| 3 |
|
prproropf1o.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝑃 ↦ 〈 inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) 〉 ) |
| 4 |
1 2
|
prproropf1olem2 |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ) → 〈 inf ( 𝑤 , 𝑉 , 𝑅 ) , sup ( 𝑤 , 𝑉 , 𝑅 ) 〉 ∈ 𝑂 ) |
| 5 |
|
infeq1 |
⊢ ( 𝑝 = 𝑤 → inf ( 𝑝 , 𝑉 , 𝑅 ) = inf ( 𝑤 , 𝑉 , 𝑅 ) ) |
| 6 |
|
supeq1 |
⊢ ( 𝑝 = 𝑤 → sup ( 𝑝 , 𝑉 , 𝑅 ) = sup ( 𝑤 , 𝑉 , 𝑅 ) ) |
| 7 |
5 6
|
opeq12d |
⊢ ( 𝑝 = 𝑤 → 〈 inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) 〉 = 〈 inf ( 𝑤 , 𝑉 , 𝑅 ) , sup ( 𝑤 , 𝑉 , 𝑅 ) 〉 ) |
| 8 |
7
|
cbvmptv |
⊢ ( 𝑝 ∈ 𝑃 ↦ 〈 inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) 〉 ) = ( 𝑤 ∈ 𝑃 ↦ 〈 inf ( 𝑤 , 𝑉 , 𝑅 ) , sup ( 𝑤 , 𝑉 , 𝑅 ) 〉 ) |
| 9 |
3 8
|
eqtri |
⊢ 𝐹 = ( 𝑤 ∈ 𝑃 ↦ 〈 inf ( 𝑤 , 𝑉 , 𝑅 ) , sup ( 𝑤 , 𝑉 , 𝑅 ) 〉 ) |
| 10 |
4 9
|
fmptd |
⊢ ( 𝑅 Or 𝑉 → 𝐹 : 𝑃 ⟶ 𝑂 ) |
| 11 |
|
3ancomb |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ↔ ( 𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃 ) ) |
| 12 |
|
3anass |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃 ) ↔ ( 𝑅 Or 𝑉 ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃 ) ) ) |
| 13 |
11 12
|
bitri |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) ↔ ( 𝑅 Or 𝑉 ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃 ) ) ) |
| 14 |
1 2 3
|
prproropf1olem4 |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 15 |
13 14
|
sylbir |
⊢ ( ( 𝑅 Or 𝑉 ∧ ( 𝑧 ∈ 𝑃 ∧ 𝑤 ∈ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 16 |
15
|
ralrimivva |
⊢ ( 𝑅 Or 𝑉 → ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝑃 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 17 |
|
dff13 |
⊢ ( 𝐹 : 𝑃 –1-1→ 𝑂 ↔ ( 𝐹 : 𝑃 ⟶ 𝑂 ∧ ∀ 𝑧 ∈ 𝑃 ∀ 𝑤 ∈ 𝑃 ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 18 |
10 16 17
|
sylanbrc |
⊢ ( 𝑅 Or 𝑉 → 𝐹 : 𝑃 –1-1→ 𝑂 ) |
| 19 |
1 2
|
prproropf1olem1 |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂 ) → { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } ∈ 𝑃 ) |
| 20 |
|
fveq2 |
⊢ ( 𝑧 = { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } ) ) |
| 21 |
20
|
eqeq2d |
⊢ ( 𝑧 = { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } → ( 𝑤 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑤 = ( 𝐹 ‘ { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂 ) ∧ 𝑧 = { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } ) → ( 𝑤 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑤 = ( 𝐹 ‘ { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } ) ) ) |
| 23 |
1 2 3
|
prproropf1olem3 |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂 ) → ( 𝐹 ‘ { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } ) = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
| 24 |
1
|
prproropf1olem0 |
⊢ ( 𝑤 ∈ 𝑂 ↔ ( 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∧ ( ( 1st ‘ 𝑤 ) ∈ 𝑉 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑉 ) ∧ ( 1st ‘ 𝑤 ) 𝑅 ( 2nd ‘ 𝑤 ) ) ) |
| 25 |
24
|
simp1bi |
⊢ ( 𝑤 ∈ 𝑂 → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
| 26 |
25
|
eqcomd |
⊢ ( 𝑤 ∈ 𝑂 → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 = 𝑤 ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂 ) → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 = 𝑤 ) |
| 28 |
23 27
|
eqtr2d |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂 ) → 𝑤 = ( 𝐹 ‘ { ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) } ) ) |
| 29 |
19 22 28
|
rspcedvd |
⊢ ( ( 𝑅 Or 𝑉 ∧ 𝑤 ∈ 𝑂 ) → ∃ 𝑧 ∈ 𝑃 𝑤 = ( 𝐹 ‘ 𝑧 ) ) |
| 30 |
29
|
ralrimiva |
⊢ ( 𝑅 Or 𝑉 → ∀ 𝑤 ∈ 𝑂 ∃ 𝑧 ∈ 𝑃 𝑤 = ( 𝐹 ‘ 𝑧 ) ) |
| 31 |
|
dffo3 |
⊢ ( 𝐹 : 𝑃 –onto→ 𝑂 ↔ ( 𝐹 : 𝑃 ⟶ 𝑂 ∧ ∀ 𝑤 ∈ 𝑂 ∃ 𝑧 ∈ 𝑃 𝑤 = ( 𝐹 ‘ 𝑧 ) ) ) |
| 32 |
10 30 31
|
sylanbrc |
⊢ ( 𝑅 Or 𝑉 → 𝐹 : 𝑃 –onto→ 𝑂 ) |
| 33 |
|
df-f1o |
⊢ ( 𝐹 : 𝑃 –1-1-onto→ 𝑂 ↔ ( 𝐹 : 𝑃 –1-1→ 𝑂 ∧ 𝐹 : 𝑃 –onto→ 𝑂 ) ) |
| 34 |
18 32 33
|
sylanbrc |
⊢ ( 𝑅 Or 𝑉 → 𝐹 : 𝑃 –1-1-onto→ 𝑂 ) |