Metamath Proof Explorer


Theorem prproropf1o

Description: There is a bijection between the set of proper pairs and the set of ordered ordered pairs, i.e., ordered pairs in which the first component is less than the second component. (Contributed by AV, 15-Mar-2023)

Ref Expression
Hypotheses prproropf1o.o 𝑂 = ( 𝑅 ∩ ( 𝑉 × 𝑉 ) )
prproropf1o.p 𝑃 = { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 }
prproropf1o.f 𝐹 = ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ )
Assertion prproropf1o ( 𝑅 Or 𝑉𝐹 : 𝑃1-1-onto𝑂 )

Proof

Step Hyp Ref Expression
1 prproropf1o.o 𝑂 = ( 𝑅 ∩ ( 𝑉 × 𝑉 ) )
2 prproropf1o.p 𝑃 = { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 }
3 prproropf1o.f 𝐹 = ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ )
4 1 2 prproropf1olem2 ( ( 𝑅 Or 𝑉𝑤𝑃 ) → ⟨ inf ( 𝑤 , 𝑉 , 𝑅 ) , sup ( 𝑤 , 𝑉 , 𝑅 ) ⟩ ∈ 𝑂 )
5 infeq1 ( 𝑝 = 𝑤 → inf ( 𝑝 , 𝑉 , 𝑅 ) = inf ( 𝑤 , 𝑉 , 𝑅 ) )
6 supeq1 ( 𝑝 = 𝑤 → sup ( 𝑝 , 𝑉 , 𝑅 ) = sup ( 𝑤 , 𝑉 , 𝑅 ) )
7 5 6 opeq12d ( 𝑝 = 𝑤 → ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ = ⟨ inf ( 𝑤 , 𝑉 , 𝑅 ) , sup ( 𝑤 , 𝑉 , 𝑅 ) ⟩ )
8 7 cbvmptv ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) = ( 𝑤𝑃 ↦ ⟨ inf ( 𝑤 , 𝑉 , 𝑅 ) , sup ( 𝑤 , 𝑉 , 𝑅 ) ⟩ )
9 3 8 eqtri 𝐹 = ( 𝑤𝑃 ↦ ⟨ inf ( 𝑤 , 𝑉 , 𝑅 ) , sup ( 𝑤 , 𝑉 , 𝑅 ) ⟩ )
10 4 9 fmptd ( 𝑅 Or 𝑉𝐹 : 𝑃𝑂 )
11 3ancomb ( ( 𝑅 Or 𝑉𝑤𝑃𝑧𝑃 ) ↔ ( 𝑅 Or 𝑉𝑧𝑃𝑤𝑃 ) )
12 3anass ( ( 𝑅 Or 𝑉𝑧𝑃𝑤𝑃 ) ↔ ( 𝑅 Or 𝑉 ∧ ( 𝑧𝑃𝑤𝑃 ) ) )
13 11 12 bitri ( ( 𝑅 Or 𝑉𝑤𝑃𝑧𝑃 ) ↔ ( 𝑅 Or 𝑉 ∧ ( 𝑧𝑃𝑤𝑃 ) ) )
14 1 2 3 prproropf1olem4 ( ( 𝑅 Or 𝑉𝑤𝑃𝑧𝑃 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) )
15 13 14 sylbir ( ( 𝑅 Or 𝑉 ∧ ( 𝑧𝑃𝑤𝑃 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) )
16 15 ralrimivva ( 𝑅 Or 𝑉 → ∀ 𝑧𝑃𝑤𝑃 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) )
17 dff13 ( 𝐹 : 𝑃1-1𝑂 ↔ ( 𝐹 : 𝑃𝑂 ∧ ∀ 𝑧𝑃𝑤𝑃 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
18 10 16 17 sylanbrc ( 𝑅 Or 𝑉𝐹 : 𝑃1-1𝑂 )
19 1 2 prproropf1olem1 ( ( 𝑅 Or 𝑉𝑤𝑂 ) → { ( 1st𝑤 ) , ( 2nd𝑤 ) } ∈ 𝑃 )
20 fveq2 ( 𝑧 = { ( 1st𝑤 ) , ( 2nd𝑤 ) } → ( 𝐹𝑧 ) = ( 𝐹 ‘ { ( 1st𝑤 ) , ( 2nd𝑤 ) } ) )
21 20 eqeq2d ( 𝑧 = { ( 1st𝑤 ) , ( 2nd𝑤 ) } → ( 𝑤 = ( 𝐹𝑧 ) ↔ 𝑤 = ( 𝐹 ‘ { ( 1st𝑤 ) , ( 2nd𝑤 ) } ) ) )
22 21 adantl ( ( ( 𝑅 Or 𝑉𝑤𝑂 ) ∧ 𝑧 = { ( 1st𝑤 ) , ( 2nd𝑤 ) } ) → ( 𝑤 = ( 𝐹𝑧 ) ↔ 𝑤 = ( 𝐹 ‘ { ( 1st𝑤 ) , ( 2nd𝑤 ) } ) ) )
23 1 2 3 prproropf1olem3 ( ( 𝑅 Or 𝑉𝑤𝑂 ) → ( 𝐹 ‘ { ( 1st𝑤 ) , ( 2nd𝑤 ) } ) = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ )
24 1 prproropf1olem0 ( 𝑤𝑂 ↔ ( 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ ∧ ( ( 1st𝑤 ) ∈ 𝑉 ∧ ( 2nd𝑤 ) ∈ 𝑉 ) ∧ ( 1st𝑤 ) 𝑅 ( 2nd𝑤 ) ) )
25 24 simp1bi ( 𝑤𝑂𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ )
26 25 eqcomd ( 𝑤𝑂 → ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ = 𝑤 )
27 26 adantl ( ( 𝑅 Or 𝑉𝑤𝑂 ) → ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ = 𝑤 )
28 23 27 eqtr2d ( ( 𝑅 Or 𝑉𝑤𝑂 ) → 𝑤 = ( 𝐹 ‘ { ( 1st𝑤 ) , ( 2nd𝑤 ) } ) )
29 19 22 28 rspcedvd ( ( 𝑅 Or 𝑉𝑤𝑂 ) → ∃ 𝑧𝑃 𝑤 = ( 𝐹𝑧 ) )
30 29 ralrimiva ( 𝑅 Or 𝑉 → ∀ 𝑤𝑂𝑧𝑃 𝑤 = ( 𝐹𝑧 ) )
31 dffo3 ( 𝐹 : 𝑃onto𝑂 ↔ ( 𝐹 : 𝑃𝑂 ∧ ∀ 𝑤𝑂𝑧𝑃 𝑤 = ( 𝐹𝑧 ) ) )
32 10 30 31 sylanbrc ( 𝑅 Or 𝑉𝐹 : 𝑃onto𝑂 )
33 df-f1o ( 𝐹 : 𝑃1-1-onto𝑂 ↔ ( 𝐹 : 𝑃1-1𝑂𝐹 : 𝑃onto𝑂 ) )
34 18 32 33 sylanbrc ( 𝑅 Or 𝑉𝐹 : 𝑃1-1-onto𝑂 )