| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prproropf1o.o |
|- O = ( R i^i ( V X. V ) ) |
| 2 |
|
prproropf1o.p |
|- P = { p e. ~P V | ( # ` p ) = 2 } |
| 3 |
|
prproropf1o.f |
|- F = ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) |
| 4 |
1 2
|
prproropf1olem2 |
|- ( ( R Or V /\ w e. P ) -> <. inf ( w , V , R ) , sup ( w , V , R ) >. e. O ) |
| 5 |
|
infeq1 |
|- ( p = w -> inf ( p , V , R ) = inf ( w , V , R ) ) |
| 6 |
|
supeq1 |
|- ( p = w -> sup ( p , V , R ) = sup ( w , V , R ) ) |
| 7 |
5 6
|
opeq12d |
|- ( p = w -> <. inf ( p , V , R ) , sup ( p , V , R ) >. = <. inf ( w , V , R ) , sup ( w , V , R ) >. ) |
| 8 |
7
|
cbvmptv |
|- ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) = ( w e. P |-> <. inf ( w , V , R ) , sup ( w , V , R ) >. ) |
| 9 |
3 8
|
eqtri |
|- F = ( w e. P |-> <. inf ( w , V , R ) , sup ( w , V , R ) >. ) |
| 10 |
4 9
|
fmptd |
|- ( R Or V -> F : P --> O ) |
| 11 |
|
3ancomb |
|- ( ( R Or V /\ w e. P /\ z e. P ) <-> ( R Or V /\ z e. P /\ w e. P ) ) |
| 12 |
|
3anass |
|- ( ( R Or V /\ z e. P /\ w e. P ) <-> ( R Or V /\ ( z e. P /\ w e. P ) ) ) |
| 13 |
11 12
|
bitri |
|- ( ( R Or V /\ w e. P /\ z e. P ) <-> ( R Or V /\ ( z e. P /\ w e. P ) ) ) |
| 14 |
1 2 3
|
prproropf1olem4 |
|- ( ( R Or V /\ w e. P /\ z e. P ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 15 |
13 14
|
sylbir |
|- ( ( R Or V /\ ( z e. P /\ w e. P ) ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 16 |
15
|
ralrimivva |
|- ( R Or V -> A. z e. P A. w e. P ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 17 |
|
dff13 |
|- ( F : P -1-1-> O <-> ( F : P --> O /\ A. z e. P A. w e. P ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 18 |
10 16 17
|
sylanbrc |
|- ( R Or V -> F : P -1-1-> O ) |
| 19 |
1 2
|
prproropf1olem1 |
|- ( ( R Or V /\ w e. O ) -> { ( 1st ` w ) , ( 2nd ` w ) } e. P ) |
| 20 |
|
fveq2 |
|- ( z = { ( 1st ` w ) , ( 2nd ` w ) } -> ( F ` z ) = ( F ` { ( 1st ` w ) , ( 2nd ` w ) } ) ) |
| 21 |
20
|
eqeq2d |
|- ( z = { ( 1st ` w ) , ( 2nd ` w ) } -> ( w = ( F ` z ) <-> w = ( F ` { ( 1st ` w ) , ( 2nd ` w ) } ) ) ) |
| 22 |
21
|
adantl |
|- ( ( ( R Or V /\ w e. O ) /\ z = { ( 1st ` w ) , ( 2nd ` w ) } ) -> ( w = ( F ` z ) <-> w = ( F ` { ( 1st ` w ) , ( 2nd ` w ) } ) ) ) |
| 23 |
1 2 3
|
prproropf1olem3 |
|- ( ( R Or V /\ w e. O ) -> ( F ` { ( 1st ` w ) , ( 2nd ` w ) } ) = <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
| 24 |
1
|
prproropf1olem0 |
|- ( w e. O <-> ( w = <. ( 1st ` w ) , ( 2nd ` w ) >. /\ ( ( 1st ` w ) e. V /\ ( 2nd ` w ) e. V ) /\ ( 1st ` w ) R ( 2nd ` w ) ) ) |
| 25 |
24
|
simp1bi |
|- ( w e. O -> w = <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
| 26 |
25
|
eqcomd |
|- ( w e. O -> <. ( 1st ` w ) , ( 2nd ` w ) >. = w ) |
| 27 |
26
|
adantl |
|- ( ( R Or V /\ w e. O ) -> <. ( 1st ` w ) , ( 2nd ` w ) >. = w ) |
| 28 |
23 27
|
eqtr2d |
|- ( ( R Or V /\ w e. O ) -> w = ( F ` { ( 1st ` w ) , ( 2nd ` w ) } ) ) |
| 29 |
19 22 28
|
rspcedvd |
|- ( ( R Or V /\ w e. O ) -> E. z e. P w = ( F ` z ) ) |
| 30 |
29
|
ralrimiva |
|- ( R Or V -> A. w e. O E. z e. P w = ( F ` z ) ) |
| 31 |
|
dffo3 |
|- ( F : P -onto-> O <-> ( F : P --> O /\ A. w e. O E. z e. P w = ( F ` z ) ) ) |
| 32 |
10 30 31
|
sylanbrc |
|- ( R Or V -> F : P -onto-> O ) |
| 33 |
|
df-f1o |
|- ( F : P -1-1-onto-> O <-> ( F : P -1-1-> O /\ F : P -onto-> O ) ) |
| 34 |
18 32 33
|
sylanbrc |
|- ( R Or V -> F : P -1-1-onto-> O ) |