| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prproropf1o.o |  |-  O = ( R i^i ( V X. V ) ) | 
						
							| 2 |  | prproropf1o.p |  |-  P = { p e. ~P V | ( # ` p ) = 2 } | 
						
							| 3 |  | pwexg |  |-  ( V e. W -> ~P V e. _V ) | 
						
							| 4 | 2 3 | rabexd |  |-  ( V e. W -> P e. _V ) | 
						
							| 5 | 4 | adantr |  |-  ( ( V e. W /\ R Or V ) -> P e. _V ) | 
						
							| 6 | 5 | mptexd |  |-  ( ( V e. W /\ R Or V ) -> ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) e. _V ) | 
						
							| 7 |  | eqid |  |-  ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) = ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) | 
						
							| 8 | 1 2 7 | prproropf1o |  |-  ( R Or V -> ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) : P -1-1-onto-> O ) | 
						
							| 9 | 8 | adantl |  |-  ( ( V e. W /\ R Or V ) -> ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) : P -1-1-onto-> O ) | 
						
							| 10 |  | f1oeq1 |  |-  ( f = ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) -> ( f : P -1-1-onto-> O <-> ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) : P -1-1-onto-> O ) ) | 
						
							| 11 | 6 9 10 | spcedv |  |-  ( ( V e. W /\ R Or V ) -> E. f f : P -1-1-onto-> O ) | 
						
							| 12 |  | ensymb |  |-  ( O ~~ P <-> P ~~ O ) | 
						
							| 13 |  | bren |  |-  ( P ~~ O <-> E. f f : P -1-1-onto-> O ) | 
						
							| 14 | 12 13 | bitri |  |-  ( O ~~ P <-> E. f f : P -1-1-onto-> O ) | 
						
							| 15 | 11 14 | sylibr |  |-  ( ( V e. W /\ R Or V ) -> O ~~ P ) |