| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prproropreud.o |  |-  O = ( R i^i ( V X. V ) ) | 
						
							| 2 |  | prproropreud.p |  |-  P = { p e. ~P V | ( # ` p ) = 2 } | 
						
							| 3 |  | prproropreud.b |  |-  ( ph -> R Or V ) | 
						
							| 4 |  | prproropreud.x |  |-  ( x = <. inf ( y , V , R ) , sup ( y , V , R ) >. -> ( ps <-> ch ) ) | 
						
							| 5 |  | prproropreud.z |  |-  ( x = z -> ( ps <-> th ) ) | 
						
							| 6 |  | eqid |  |-  ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) = ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) | 
						
							| 7 | 1 2 6 | prproropf1o |  |-  ( R Or V -> ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) : P -1-1-onto-> O ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) : P -1-1-onto-> O ) | 
						
							| 9 |  | sbceq1a |  |-  ( x = ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) -> ( ps <-> [. ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) / x ]. ps ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ x = ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) ) -> ( ps <-> [. ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) / x ]. ps ) ) | 
						
							| 11 |  | nfsbc1v |  |-  F/ x [. ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) / x ]. ps | 
						
							| 12 | 8 10 5 11 | reuf1odnf |  |-  ( ph -> ( E! x e. O ps <-> E! y e. P [. ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) / x ]. ps ) ) | 
						
							| 13 |  | eqidd |  |-  ( ( ph /\ y e. P ) -> ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) = ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ) | 
						
							| 14 |  | infeq1 |  |-  ( p = y -> inf ( p , V , R ) = inf ( y , V , R ) ) | 
						
							| 15 |  | supeq1 |  |-  ( p = y -> sup ( p , V , R ) = sup ( y , V , R ) ) | 
						
							| 16 | 14 15 | opeq12d |  |-  ( p = y -> <. inf ( p , V , R ) , sup ( p , V , R ) >. = <. inf ( y , V , R ) , sup ( y , V , R ) >. ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( ph /\ y e. P ) /\ p = y ) -> <. inf ( p , V , R ) , sup ( p , V , R ) >. = <. inf ( y , V , R ) , sup ( y , V , R ) >. ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ y e. P ) -> y e. P ) | 
						
							| 19 |  | opex |  |-  <. inf ( y , V , R ) , sup ( y , V , R ) >. e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ( ph /\ y e. P ) -> <. inf ( y , V , R ) , sup ( y , V , R ) >. e. _V ) | 
						
							| 21 | 13 17 18 20 | fvmptd |  |-  ( ( ph /\ y e. P ) -> ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) = <. inf ( y , V , R ) , sup ( y , V , R ) >. ) | 
						
							| 22 | 21 | sbceq1d |  |-  ( ( ph /\ y e. P ) -> ( [. ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) / x ]. ps <-> [. <. inf ( y , V , R ) , sup ( y , V , R ) >. / x ]. ps ) ) | 
						
							| 23 | 4 | sbcieg |  |-  ( <. inf ( y , V , R ) , sup ( y , V , R ) >. e. _V -> ( [. <. inf ( y , V , R ) , sup ( y , V , R ) >. / x ]. ps <-> ch ) ) | 
						
							| 24 | 20 23 | syl |  |-  ( ( ph /\ y e. P ) -> ( [. <. inf ( y , V , R ) , sup ( y , V , R ) >. / x ]. ps <-> ch ) ) | 
						
							| 25 | 22 24 | bitrd |  |-  ( ( ph /\ y e. P ) -> ( [. ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) / x ]. ps <-> ch ) ) | 
						
							| 26 | 25 | reubidva |  |-  ( ph -> ( E! y e. P [. ( ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) ` y ) / x ]. ps <-> E! y e. P ch ) ) | 
						
							| 27 | 12 26 | bitrd |  |-  ( ph -> ( E! x e. O ps <-> E! y e. P ch ) ) |