Metamath Proof Explorer


Theorem prproropreud

Description: There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023)

Ref Expression
Hypotheses prproropreud.o 𝑂 = ( 𝑅 ∩ ( 𝑉 × 𝑉 ) )
prproropreud.p 𝑃 = { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 }
prproropreud.b ( 𝜑𝑅 Or 𝑉 )
prproropreud.x ( 𝑥 = ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ → ( 𝜓𝜒 ) )
prproropreud.z ( 𝑥 = 𝑧 → ( 𝜓𝜃 ) )
Assertion prproropreud ( 𝜑 → ( ∃! 𝑥𝑂 𝜓 ↔ ∃! 𝑦𝑃 𝜒 ) )

Proof

Step Hyp Ref Expression
1 prproropreud.o 𝑂 = ( 𝑅 ∩ ( 𝑉 × 𝑉 ) )
2 prproropreud.p 𝑃 = { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 }
3 prproropreud.b ( 𝜑𝑅 Or 𝑉 )
4 prproropreud.x ( 𝑥 = ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ → ( 𝜓𝜒 ) )
5 prproropreud.z ( 𝑥 = 𝑧 → ( 𝜓𝜃 ) )
6 eqid ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) = ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ )
7 1 2 6 prproropf1o ( 𝑅 Or 𝑉 → ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) : 𝑃1-1-onto𝑂 )
8 3 7 syl ( 𝜑 → ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) : 𝑃1-1-onto𝑂 )
9 sbceq1a ( 𝑥 = ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) → ( 𝜓[ ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) / 𝑥 ] 𝜓 ) )
10 9 adantl ( ( 𝜑𝑥 = ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) ) → ( 𝜓[ ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) / 𝑥 ] 𝜓 ) )
11 nfsbc1v 𝑥 [ ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) / 𝑥 ] 𝜓
12 8 10 5 11 reuf1odnf ( 𝜑 → ( ∃! 𝑥𝑂 𝜓 ↔ ∃! 𝑦𝑃 [ ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) / 𝑥 ] 𝜓 ) )
13 eqidd ( ( 𝜑𝑦𝑃 ) → ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) = ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) )
14 infeq1 ( 𝑝 = 𝑦 → inf ( 𝑝 , 𝑉 , 𝑅 ) = inf ( 𝑦 , 𝑉 , 𝑅 ) )
15 supeq1 ( 𝑝 = 𝑦 → sup ( 𝑝 , 𝑉 , 𝑅 ) = sup ( 𝑦 , 𝑉 , 𝑅 ) )
16 14 15 opeq12d ( 𝑝 = 𝑦 → ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ = ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ )
17 16 adantl ( ( ( 𝜑𝑦𝑃 ) ∧ 𝑝 = 𝑦 ) → ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ = ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ )
18 simpr ( ( 𝜑𝑦𝑃 ) → 𝑦𝑃 )
19 opex ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ ∈ V
20 19 a1i ( ( 𝜑𝑦𝑃 ) → ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ ∈ V )
21 13 17 18 20 fvmptd ( ( 𝜑𝑦𝑃 ) → ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) = ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ )
22 21 sbceq1d ( ( 𝜑𝑦𝑃 ) → ( [ ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) / 𝑥 ] 𝜓[ ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ / 𝑥 ] 𝜓 ) )
23 4 sbcieg ( ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ ∈ V → ( [ ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ / 𝑥 ] 𝜓𝜒 ) )
24 20 23 syl ( ( 𝜑𝑦𝑃 ) → ( [ ⟨ inf ( 𝑦 , 𝑉 , 𝑅 ) , sup ( 𝑦 , 𝑉 , 𝑅 ) ⟩ / 𝑥 ] 𝜓𝜒 ) )
25 22 24 bitrd ( ( 𝜑𝑦𝑃 ) → ( [ ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) / 𝑥 ] 𝜓𝜒 ) )
26 25 reubidva ( 𝜑 → ( ∃! 𝑦𝑃 [ ( ( 𝑝𝑃 ↦ ⟨ inf ( 𝑝 , 𝑉 , 𝑅 ) , sup ( 𝑝 , 𝑉 , 𝑅 ) ⟩ ) ‘ 𝑦 ) / 𝑥 ] 𝜓 ↔ ∃! 𝑦𝑃 𝜒 ) )
27 12 26 bitrd ( 𝜑 → ( ∃! 𝑥𝑂 𝜓 ↔ ∃! 𝑦𝑃 𝜒 ) )