| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prproropf1o.o |  |-  O = ( R i^i ( V X. V ) ) | 
						
							| 2 |  | prproropf1o.p |  |-  P = { p e. ~P V | ( # ` p ) = 2 } | 
						
							| 3 |  | prproropf1o.f |  |-  F = ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) | 
						
							| 4 |  | infeq1 |  |-  ( p = Z -> inf ( p , V , R ) = inf ( Z , V , R ) ) | 
						
							| 5 |  | supeq1 |  |-  ( p = Z -> sup ( p , V , R ) = sup ( Z , V , R ) ) | 
						
							| 6 | 4 5 | opeq12d |  |-  ( p = Z -> <. inf ( p , V , R ) , sup ( p , V , R ) >. = <. inf ( Z , V , R ) , sup ( Z , V , R ) >. ) | 
						
							| 7 |  | simp3 |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> Z e. P ) | 
						
							| 8 |  | opex |  |-  <. inf ( Z , V , R ) , sup ( Z , V , R ) >. e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> <. inf ( Z , V , R ) , sup ( Z , V , R ) >. e. _V ) | 
						
							| 10 | 3 6 7 9 | fvmptd3 |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> ( F ` Z ) = <. inf ( Z , V , R ) , sup ( Z , V , R ) >. ) | 
						
							| 11 |  | infeq1 |  |-  ( p = W -> inf ( p , V , R ) = inf ( W , V , R ) ) | 
						
							| 12 |  | supeq1 |  |-  ( p = W -> sup ( p , V , R ) = sup ( W , V , R ) ) | 
						
							| 13 | 11 12 | opeq12d |  |-  ( p = W -> <. inf ( p , V , R ) , sup ( p , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. ) | 
						
							| 14 |  | simp2 |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> W e. P ) | 
						
							| 15 |  | opex |  |-  <. inf ( W , V , R ) , sup ( W , V , R ) >. e. _V | 
						
							| 16 | 15 | a1i |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> <. inf ( W , V , R ) , sup ( W , V , R ) >. e. _V ) | 
						
							| 17 | 3 13 14 16 | fvmptd3 |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> ( F ` W ) = <. inf ( W , V , R ) , sup ( W , V , R ) >. ) | 
						
							| 18 | 10 17 | eqeq12d |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> ( ( F ` Z ) = ( F ` W ) <-> <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. ) ) | 
						
							| 19 | 2 | prpair |  |-  ( Z e. P <-> E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) ) | 
						
							| 20 | 2 | prpair |  |-  ( W e. P <-> E. a e. V E. b e. V ( W = { a , b } /\ a =/= b ) ) | 
						
							| 21 |  | id |  |-  ( R Or V -> R Or V ) | 
						
							| 22 | 21 | infexd |  |-  ( R Or V -> inf ( { c , d } , V , R ) e. _V ) | 
						
							| 23 | 21 | supexd |  |-  ( R Or V -> sup ( { c , d } , V , R ) e. _V ) | 
						
							| 24 | 22 23 | jca |  |-  ( R Or V -> ( inf ( { c , d } , V , R ) e. _V /\ sup ( { c , d } , V , R ) e. _V ) ) | 
						
							| 25 | 24 | ad4antr |  |-  ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( inf ( { c , d } , V , R ) e. _V /\ sup ( { c , d } , V , R ) e. _V ) ) | 
						
							| 26 |  | opthg |  |-  ( ( inf ( { c , d } , V , R ) e. _V /\ sup ( { c , d } , V , R ) e. _V ) -> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. <-> ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. <-> ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) ) ) | 
						
							| 28 |  | solin |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a R b \/ a = b \/ b R a ) ) | 
						
							| 29 |  | infpr |  |-  ( ( R Or V /\ a e. V /\ b e. V ) -> inf ( { a , b } , V , R ) = if ( a R b , a , b ) ) | 
						
							| 30 | 29 | 3expb |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> inf ( { a , b } , V , R ) = if ( a R b , a , b ) ) | 
						
							| 31 |  | iftrue |  |-  ( a R b -> if ( a R b , a , b ) = a ) | 
						
							| 32 | 30 31 | sylan9eqr |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> inf ( { a , b } , V , R ) = a ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) <-> inf ( { c , d } , V , R ) = a ) ) | 
						
							| 34 |  | suppr |  |-  ( ( R Or V /\ a e. V /\ b e. V ) -> sup ( { a , b } , V , R ) = if ( b R a , a , b ) ) | 
						
							| 35 | 34 | 3expb |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> sup ( { a , b } , V , R ) = if ( b R a , a , b ) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> sup ( { a , b } , V , R ) = if ( b R a , a , b ) ) | 
						
							| 37 |  | sotric |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a R b <-> -. ( a = b \/ b R a ) ) ) | 
						
							| 38 |  | ioran |  |-  ( -. ( a = b \/ b R a ) <-> ( -. a = b /\ -. b R a ) ) | 
						
							| 39 |  | iffalse |  |-  ( -. b R a -> if ( b R a , a , b ) = b ) | 
						
							| 40 | 38 39 | simplbiim |  |-  ( -. ( a = b \/ b R a ) -> if ( b R a , a , b ) = b ) | 
						
							| 41 | 37 40 | biimtrdi |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a R b -> if ( b R a , a , b ) = b ) ) | 
						
							| 42 | 41 | impcom |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> if ( b R a , a , b ) = b ) | 
						
							| 43 | 36 42 | eqtrd |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> sup ( { a , b } , V , R ) = b ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) <-> sup ( { c , d } , V , R ) = b ) ) | 
						
							| 45 | 33 44 | anbi12d |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) <-> ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) <-> ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) ) ) | 
						
							| 47 |  | solin |  |-  ( ( R Or V /\ ( c e. V /\ d e. V ) ) -> ( c R d \/ c = d \/ d R c ) ) | 
						
							| 48 | 47 | adantrr |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( c R d \/ c = d \/ d R c ) ) | 
						
							| 49 |  | simpl |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> R Or V ) | 
						
							| 50 |  | simprll |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> c e. V ) | 
						
							| 51 |  | simprlr |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> d e. V ) | 
						
							| 52 |  | infpr |  |-  ( ( R Or V /\ c e. V /\ d e. V ) -> inf ( { c , d } , V , R ) = if ( c R d , c , d ) ) | 
						
							| 53 | 49 50 51 52 | syl3anc |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> inf ( { c , d } , V , R ) = if ( c R d , c , d ) ) | 
						
							| 54 |  | iftrue |  |-  ( c R d -> if ( c R d , c , d ) = c ) | 
						
							| 55 | 53 54 | sylan9eqr |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> inf ( { c , d } , V , R ) = c ) | 
						
							| 56 | 55 | eqeq1d |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( inf ( { c , d } , V , R ) = a <-> c = a ) ) | 
						
							| 57 |  | suppr |  |-  ( ( R Or V /\ c e. V /\ d e. V ) -> sup ( { c , d } , V , R ) = if ( d R c , c , d ) ) | 
						
							| 58 | 49 50 51 57 | syl3anc |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> sup ( { c , d } , V , R ) = if ( d R c , c , d ) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> sup ( { c , d } , V , R ) = if ( d R c , c , d ) ) | 
						
							| 60 |  | sotric |  |-  ( ( R Or V /\ ( c e. V /\ d e. V ) ) -> ( c R d <-> -. ( c = d \/ d R c ) ) ) | 
						
							| 61 | 60 | adantrr |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( c R d <-> -. ( c = d \/ d R c ) ) ) | 
						
							| 62 |  | ioran |  |-  ( -. ( c = d \/ d R c ) <-> ( -. c = d /\ -. d R c ) ) | 
						
							| 63 |  | iffalse |  |-  ( -. d R c -> if ( d R c , c , d ) = d ) | 
						
							| 64 | 62 63 | simplbiim |  |-  ( -. ( c = d \/ d R c ) -> if ( d R c , c , d ) = d ) | 
						
							| 65 | 61 64 | biimtrdi |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( c R d -> if ( d R c , c , d ) = d ) ) | 
						
							| 66 | 65 | impcom |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> if ( d R c , c , d ) = d ) | 
						
							| 67 | 59 66 | eqtrd |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> sup ( { c , d } , V , R ) = d ) | 
						
							| 68 | 67 | eqeq1d |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( sup ( { c , d } , V , R ) = b <-> d = b ) ) | 
						
							| 69 | 56 68 | anbi12d |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) <-> ( c = a /\ d = b ) ) ) | 
						
							| 70 |  | orc |  |-  ( ( c = a /\ d = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) | 
						
							| 71 | 69 70 | biimtrdi |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 72 | 71 | ex |  |-  ( c R d -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 73 |  | eqneqall |  |-  ( c = d -> ( c =/= d -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 74 | 73 | adantld |  |-  ( c = d -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 75 | 74 | adantld |  |-  ( c = d -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 76 | 53 | adantl |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> inf ( { c , d } , V , R ) = if ( c R d , c , d ) ) | 
						
							| 77 | 76 | eqeq1d |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( inf ( { c , d } , V , R ) = a <-> if ( c R d , c , d ) = a ) ) | 
						
							| 78 |  | iftrue |  |-  ( d R c -> if ( d R c , c , d ) = c ) | 
						
							| 79 | 58 78 | sylan9eqr |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> sup ( { c , d } , V , R ) = c ) | 
						
							| 80 | 79 | eqeq1d |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( sup ( { c , d } , V , R ) = b <-> c = b ) ) | 
						
							| 81 | 77 80 | anbi12d |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) <-> ( if ( c R d , c , d ) = a /\ c = b ) ) ) | 
						
							| 82 |  | simpl |  |-  ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( c e. V /\ d e. V ) ) | 
						
							| 83 | 82 | ancomd |  |-  ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( d e. V /\ c e. V ) ) | 
						
							| 84 |  | sotric |  |-  ( ( R Or V /\ ( d e. V /\ c e. V ) ) -> ( d R c <-> -. ( d = c \/ c R d ) ) ) | 
						
							| 85 | 83 84 | sylan2 |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( d R c <-> -. ( d = c \/ c R d ) ) ) | 
						
							| 86 |  | ioran |  |-  ( -. ( d = c \/ c R d ) <-> ( -. d = c /\ -. c R d ) ) | 
						
							| 87 |  | iffalse |  |-  ( -. c R d -> if ( c R d , c , d ) = d ) | 
						
							| 88 | 86 87 | simplbiim |  |-  ( -. ( d = c \/ c R d ) -> if ( c R d , c , d ) = d ) | 
						
							| 89 | 88 | eqeq1d |  |-  ( -. ( d = c \/ c R d ) -> ( if ( c R d , c , d ) = a <-> d = a ) ) | 
						
							| 90 | 85 89 | biimtrdi |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( d R c -> ( if ( c R d , c , d ) = a <-> d = a ) ) ) | 
						
							| 91 | 90 | impcom |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( if ( c R d , c , d ) = a <-> d = a ) ) | 
						
							| 92 | 91 | anbi1d |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( if ( c R d , c , d ) = a /\ c = b ) <-> ( d = a /\ c = b ) ) ) | 
						
							| 93 |  | olc |  |-  ( ( c = b /\ d = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) | 
						
							| 94 | 93 | ancoms |  |-  ( ( d = a /\ c = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) | 
						
							| 95 | 92 94 | biimtrdi |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( if ( c R d , c , d ) = a /\ c = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 96 | 81 95 | sylbid |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 97 | 96 | ex |  |-  ( d R c -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 98 | 72 75 97 | 3jaoi |  |-  ( ( c R d \/ c = d \/ d R c ) -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 99 | 48 98 | mpcom |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 100 | 99 | ex |  |-  ( R Or V -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 101 | 100 | ad2antrl |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 102 | 101 | imp |  |-  ( ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 103 | 46 102 | sylbid |  |-  ( ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 104 | 103 | ex |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 105 | 104 | a1d |  |-  ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) | 
						
							| 106 | 105 | ex |  |-  ( a R b -> ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) ) | 
						
							| 107 |  | eqneqall |  |-  ( a = b -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) | 
						
							| 108 | 107 | a1d |  |-  ( a = b -> ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) ) | 
						
							| 109 | 30 | adantl |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> inf ( { a , b } , V , R ) = if ( a R b , a , b ) ) | 
						
							| 110 |  | sotric |  |-  ( ( R Or V /\ ( b e. V /\ a e. V ) ) -> ( b R a <-> -. ( b = a \/ a R b ) ) ) | 
						
							| 111 | 110 | ancom2s |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( b R a <-> -. ( b = a \/ a R b ) ) ) | 
						
							| 112 |  | ioran |  |-  ( -. ( b = a \/ a R b ) <-> ( -. b = a /\ -. a R b ) ) | 
						
							| 113 |  | iffalse |  |-  ( -. a R b -> if ( a R b , a , b ) = b ) | 
						
							| 114 | 112 113 | simplbiim |  |-  ( -. ( b = a \/ a R b ) -> if ( a R b , a , b ) = b ) | 
						
							| 115 | 111 114 | biimtrdi |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( b R a -> if ( a R b , a , b ) = b ) ) | 
						
							| 116 | 115 | impcom |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> if ( a R b , a , b ) = b ) | 
						
							| 117 | 109 116 | eqtrd |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> inf ( { a , b } , V , R ) = b ) | 
						
							| 118 | 117 | eqeq2d |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) <-> inf ( { c , d } , V , R ) = b ) ) | 
						
							| 119 |  | iftrue |  |-  ( b R a -> if ( b R a , a , b ) = a ) | 
						
							| 120 | 35 119 | sylan9eqr |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> sup ( { a , b } , V , R ) = a ) | 
						
							| 121 | 120 | eqeq2d |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) <-> sup ( { c , d } , V , R ) = a ) ) | 
						
							| 122 | 118 121 | anbi12d |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) <-> ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) ) ) | 
						
							| 123 | 122 | adantr |  |-  ( ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) <-> ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) ) ) | 
						
							| 124 | 55 | eqeq1d |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( inf ( { c , d } , V , R ) = b <-> c = b ) ) | 
						
							| 125 | 67 | eqeq1d |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( sup ( { c , d } , V , R ) = a <-> d = a ) ) | 
						
							| 126 | 124 125 | anbi12d |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) <-> ( c = b /\ d = a ) ) ) | 
						
							| 127 | 126 93 | biimtrdi |  |-  ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 128 | 127 | ex |  |-  ( c R d -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 129 |  | eqneqall |  |-  ( c = d -> ( c =/= d -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 130 | 129 | adantld |  |-  ( c = d -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 131 | 130 | adantld |  |-  ( c = d -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 132 | 85 88 | biimtrdi |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( d R c -> if ( c R d , c , d ) = d ) ) | 
						
							| 133 | 132 | impcom |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> if ( c R d , c , d ) = d ) | 
						
							| 134 | 76 133 | eqtrd |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> inf ( { c , d } , V , R ) = d ) | 
						
							| 135 | 134 | eqeq1d |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( inf ( { c , d } , V , R ) = b <-> d = b ) ) | 
						
							| 136 | 79 | eqeq1d |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( sup ( { c , d } , V , R ) = a <-> c = a ) ) | 
						
							| 137 | 135 136 | anbi12d |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) <-> ( d = b /\ c = a ) ) ) | 
						
							| 138 | 70 | ancoms |  |-  ( ( d = b /\ c = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) | 
						
							| 139 | 137 138 | biimtrdi |  |-  ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 140 | 139 | ex |  |-  ( d R c -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 141 | 128 131 140 | 3jaoi |  |-  ( ( c R d \/ c = d \/ d R c ) -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 142 | 48 141 | mpcom |  |-  ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 143 | 142 | ex |  |-  ( R Or V -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 144 | 143 | ad2antrl |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 145 | 144 | imp |  |-  ( ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 146 | 123 145 | sylbid |  |-  ( ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 147 | 146 | ex |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 148 | 147 | a1d |  |-  ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) | 
						
							| 149 | 148 | ex |  |-  ( b R a -> ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) ) | 
						
							| 150 | 106 108 149 | 3jaoi |  |-  ( ( a R b \/ a = b \/ b R a ) -> ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) ) | 
						
							| 151 | 28 150 | mpcom |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) | 
						
							| 152 | 151 | adantld |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( ( W = { a , b } /\ a =/= b ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) | 
						
							| 153 | 152 | imp |  |-  ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 154 | 153 | expdimp |  |-  ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( c =/= d -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 155 | 154 | adantld |  |-  ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( Z = { c , d } /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) | 
						
							| 156 | 155 | imp |  |-  ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) | 
						
							| 157 |  | vex |  |-  c e. _V | 
						
							| 158 |  | vex |  |-  d e. _V | 
						
							| 159 |  | vex |  |-  a e. _V | 
						
							| 160 |  | vex |  |-  b e. _V | 
						
							| 161 | 157 158 159 160 | preq12b |  |-  ( { c , d } = { a , b } <-> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) | 
						
							| 162 | 156 161 | imbitrrdi |  |-  ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> { c , d } = { a , b } ) ) | 
						
							| 163 | 27 162 | sylbid |  |-  ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) | 
						
							| 164 |  | infeq1 |  |-  ( Z = { c , d } -> inf ( Z , V , R ) = inf ( { c , d } , V , R ) ) | 
						
							| 165 |  | supeq1 |  |-  ( Z = { c , d } -> sup ( Z , V , R ) = sup ( { c , d } , V , R ) ) | 
						
							| 166 | 164 165 | opeq12d |  |-  ( Z = { c , d } -> <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. ) | 
						
							| 167 |  | infeq1 |  |-  ( W = { a , b } -> inf ( W , V , R ) = inf ( { a , b } , V , R ) ) | 
						
							| 168 |  | supeq1 |  |-  ( W = { a , b } -> sup ( W , V , R ) = sup ( { a , b } , V , R ) ) | 
						
							| 169 | 167 168 | opeq12d |  |-  ( W = { a , b } -> <. inf ( W , V , R ) , sup ( W , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. ) | 
						
							| 170 | 166 169 | eqeqan12rd |  |-  ( ( W = { a , b } /\ Z = { c , d } ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. <-> <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. ) ) | 
						
							| 171 |  | eqeq12 |  |-  ( ( Z = { c , d } /\ W = { a , b } ) -> ( Z = W <-> { c , d } = { a , b } ) ) | 
						
							| 172 | 171 | ancoms |  |-  ( ( W = { a , b } /\ Z = { c , d } ) -> ( Z = W <-> { c , d } = { a , b } ) ) | 
						
							| 173 | 170 172 | imbi12d |  |-  ( ( W = { a , b } /\ Z = { c , d } ) -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) | 
						
							| 174 | 173 | ex |  |-  ( W = { a , b } -> ( Z = { c , d } -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) | 
						
							| 175 | 174 | ad2antrl |  |-  ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) -> ( Z = { c , d } -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) | 
						
							| 176 | 175 | adantr |  |-  ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( Z = { c , d } -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) | 
						
							| 177 | 176 | com12 |  |-  ( Z = { c , d } -> ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) | 
						
							| 178 | 177 | adantr |  |-  ( ( Z = { c , d } /\ c =/= d ) -> ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) | 
						
							| 179 | 178 | impcom |  |-  ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) | 
						
							| 180 | 163 179 | mpbird |  |-  ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) | 
						
							| 181 | 180 | ex |  |-  ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( Z = { c , d } /\ c =/= d ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) | 
						
							| 182 | 181 | rexlimdvva |  |-  ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) -> ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) | 
						
							| 183 | 182 | ex |  |-  ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( ( W = { a , b } /\ a =/= b ) -> ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) | 
						
							| 184 | 183 | rexlimdvva |  |-  ( R Or V -> ( E. a e. V E. b e. V ( W = { a , b } /\ a =/= b ) -> ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) | 
						
							| 185 | 184 | com13 |  |-  ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( E. a e. V E. b e. V ( W = { a , b } /\ a =/= b ) -> ( R Or V -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) | 
						
							| 186 | 20 185 | biimtrid |  |-  ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( W e. P -> ( R Or V -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) | 
						
							| 187 | 19 186 | sylbi |  |-  ( Z e. P -> ( W e. P -> ( R Or V -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) | 
						
							| 188 | 187 | 3imp31 |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) | 
						
							| 189 | 18 188 | sylbid |  |-  ( ( R Or V /\ W e. P /\ Z e. P ) -> ( ( F ` Z ) = ( F ` W ) -> Z = W ) ) |