Step |
Hyp |
Ref |
Expression |
1 |
|
prproropf1o.o |
|- O = ( R i^i ( V X. V ) ) |
2 |
|
prproropf1o.p |
|- P = { p e. ~P V | ( # ` p ) = 2 } |
3 |
|
prproropf1o.f |
|- F = ( p e. P |-> <. inf ( p , V , R ) , sup ( p , V , R ) >. ) |
4 |
|
infeq1 |
|- ( p = Z -> inf ( p , V , R ) = inf ( Z , V , R ) ) |
5 |
|
supeq1 |
|- ( p = Z -> sup ( p , V , R ) = sup ( Z , V , R ) ) |
6 |
4 5
|
opeq12d |
|- ( p = Z -> <. inf ( p , V , R ) , sup ( p , V , R ) >. = <. inf ( Z , V , R ) , sup ( Z , V , R ) >. ) |
7 |
|
simp3 |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> Z e. P ) |
8 |
|
opex |
|- <. inf ( Z , V , R ) , sup ( Z , V , R ) >. e. _V |
9 |
8
|
a1i |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> <. inf ( Z , V , R ) , sup ( Z , V , R ) >. e. _V ) |
10 |
3 6 7 9
|
fvmptd3 |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> ( F ` Z ) = <. inf ( Z , V , R ) , sup ( Z , V , R ) >. ) |
11 |
|
infeq1 |
|- ( p = W -> inf ( p , V , R ) = inf ( W , V , R ) ) |
12 |
|
supeq1 |
|- ( p = W -> sup ( p , V , R ) = sup ( W , V , R ) ) |
13 |
11 12
|
opeq12d |
|- ( p = W -> <. inf ( p , V , R ) , sup ( p , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. ) |
14 |
|
simp2 |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> W e. P ) |
15 |
|
opex |
|- <. inf ( W , V , R ) , sup ( W , V , R ) >. e. _V |
16 |
15
|
a1i |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> <. inf ( W , V , R ) , sup ( W , V , R ) >. e. _V ) |
17 |
3 13 14 16
|
fvmptd3 |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> ( F ` W ) = <. inf ( W , V , R ) , sup ( W , V , R ) >. ) |
18 |
10 17
|
eqeq12d |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> ( ( F ` Z ) = ( F ` W ) <-> <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. ) ) |
19 |
2
|
prpair |
|- ( Z e. P <-> E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) ) |
20 |
2
|
prpair |
|- ( W e. P <-> E. a e. V E. b e. V ( W = { a , b } /\ a =/= b ) ) |
21 |
|
id |
|- ( R Or V -> R Or V ) |
22 |
21
|
infexd |
|- ( R Or V -> inf ( { c , d } , V , R ) e. _V ) |
23 |
21
|
supexd |
|- ( R Or V -> sup ( { c , d } , V , R ) e. _V ) |
24 |
22 23
|
jca |
|- ( R Or V -> ( inf ( { c , d } , V , R ) e. _V /\ sup ( { c , d } , V , R ) e. _V ) ) |
25 |
24
|
ad4antr |
|- ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( inf ( { c , d } , V , R ) e. _V /\ sup ( { c , d } , V , R ) e. _V ) ) |
26 |
|
opthg |
|- ( ( inf ( { c , d } , V , R ) e. _V /\ sup ( { c , d } , V , R ) e. _V ) -> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. <-> ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) ) ) |
27 |
25 26
|
syl |
|- ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. <-> ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) ) ) |
28 |
|
solin |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a R b \/ a = b \/ b R a ) ) |
29 |
|
infpr |
|- ( ( R Or V /\ a e. V /\ b e. V ) -> inf ( { a , b } , V , R ) = if ( a R b , a , b ) ) |
30 |
29
|
3expb |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> inf ( { a , b } , V , R ) = if ( a R b , a , b ) ) |
31 |
|
iftrue |
|- ( a R b -> if ( a R b , a , b ) = a ) |
32 |
30 31
|
sylan9eqr |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> inf ( { a , b } , V , R ) = a ) |
33 |
32
|
eqeq2d |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) <-> inf ( { c , d } , V , R ) = a ) ) |
34 |
|
suppr |
|- ( ( R Or V /\ a e. V /\ b e. V ) -> sup ( { a , b } , V , R ) = if ( b R a , a , b ) ) |
35 |
34
|
3expb |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> sup ( { a , b } , V , R ) = if ( b R a , a , b ) ) |
36 |
35
|
adantl |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> sup ( { a , b } , V , R ) = if ( b R a , a , b ) ) |
37 |
|
sotric |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a R b <-> -. ( a = b \/ b R a ) ) ) |
38 |
|
ioran |
|- ( -. ( a = b \/ b R a ) <-> ( -. a = b /\ -. b R a ) ) |
39 |
|
iffalse |
|- ( -. b R a -> if ( b R a , a , b ) = b ) |
40 |
38 39
|
simplbiim |
|- ( -. ( a = b \/ b R a ) -> if ( b R a , a , b ) = b ) |
41 |
37 40
|
syl6bi |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a R b -> if ( b R a , a , b ) = b ) ) |
42 |
41
|
impcom |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> if ( b R a , a , b ) = b ) |
43 |
36 42
|
eqtrd |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> sup ( { a , b } , V , R ) = b ) |
44 |
43
|
eqeq2d |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) <-> sup ( { c , d } , V , R ) = b ) ) |
45 |
33 44
|
anbi12d |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) <-> ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) ) ) |
46 |
45
|
adantr |
|- ( ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) <-> ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) ) ) |
47 |
|
solin |
|- ( ( R Or V /\ ( c e. V /\ d e. V ) ) -> ( c R d \/ c = d \/ d R c ) ) |
48 |
47
|
adantrr |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( c R d \/ c = d \/ d R c ) ) |
49 |
|
simpl |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> R Or V ) |
50 |
|
simprll |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> c e. V ) |
51 |
|
simprlr |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> d e. V ) |
52 |
|
infpr |
|- ( ( R Or V /\ c e. V /\ d e. V ) -> inf ( { c , d } , V , R ) = if ( c R d , c , d ) ) |
53 |
49 50 51 52
|
syl3anc |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> inf ( { c , d } , V , R ) = if ( c R d , c , d ) ) |
54 |
|
iftrue |
|- ( c R d -> if ( c R d , c , d ) = c ) |
55 |
53 54
|
sylan9eqr |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> inf ( { c , d } , V , R ) = c ) |
56 |
55
|
eqeq1d |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( inf ( { c , d } , V , R ) = a <-> c = a ) ) |
57 |
|
suppr |
|- ( ( R Or V /\ c e. V /\ d e. V ) -> sup ( { c , d } , V , R ) = if ( d R c , c , d ) ) |
58 |
49 50 51 57
|
syl3anc |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> sup ( { c , d } , V , R ) = if ( d R c , c , d ) ) |
59 |
58
|
adantl |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> sup ( { c , d } , V , R ) = if ( d R c , c , d ) ) |
60 |
|
sotric |
|- ( ( R Or V /\ ( c e. V /\ d e. V ) ) -> ( c R d <-> -. ( c = d \/ d R c ) ) ) |
61 |
60
|
adantrr |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( c R d <-> -. ( c = d \/ d R c ) ) ) |
62 |
|
ioran |
|- ( -. ( c = d \/ d R c ) <-> ( -. c = d /\ -. d R c ) ) |
63 |
|
iffalse |
|- ( -. d R c -> if ( d R c , c , d ) = d ) |
64 |
62 63
|
simplbiim |
|- ( -. ( c = d \/ d R c ) -> if ( d R c , c , d ) = d ) |
65 |
61 64
|
syl6bi |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( c R d -> if ( d R c , c , d ) = d ) ) |
66 |
65
|
impcom |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> if ( d R c , c , d ) = d ) |
67 |
59 66
|
eqtrd |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> sup ( { c , d } , V , R ) = d ) |
68 |
67
|
eqeq1d |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( sup ( { c , d } , V , R ) = b <-> d = b ) ) |
69 |
56 68
|
anbi12d |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) <-> ( c = a /\ d = b ) ) ) |
70 |
|
orc |
|- ( ( c = a /\ d = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) |
71 |
69 70
|
syl6bi |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
72 |
71
|
ex |
|- ( c R d -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
73 |
|
eqneqall |
|- ( c = d -> ( c =/= d -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
74 |
73
|
adantld |
|- ( c = d -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
75 |
74
|
adantld |
|- ( c = d -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
76 |
53
|
adantl |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> inf ( { c , d } , V , R ) = if ( c R d , c , d ) ) |
77 |
76
|
eqeq1d |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( inf ( { c , d } , V , R ) = a <-> if ( c R d , c , d ) = a ) ) |
78 |
|
iftrue |
|- ( d R c -> if ( d R c , c , d ) = c ) |
79 |
58 78
|
sylan9eqr |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> sup ( { c , d } , V , R ) = c ) |
80 |
79
|
eqeq1d |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( sup ( { c , d } , V , R ) = b <-> c = b ) ) |
81 |
77 80
|
anbi12d |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) <-> ( if ( c R d , c , d ) = a /\ c = b ) ) ) |
82 |
|
simpl |
|- ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( c e. V /\ d e. V ) ) |
83 |
82
|
ancomd |
|- ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( d e. V /\ c e. V ) ) |
84 |
|
sotric |
|- ( ( R Or V /\ ( d e. V /\ c e. V ) ) -> ( d R c <-> -. ( d = c \/ c R d ) ) ) |
85 |
83 84
|
sylan2 |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( d R c <-> -. ( d = c \/ c R d ) ) ) |
86 |
|
ioran |
|- ( -. ( d = c \/ c R d ) <-> ( -. d = c /\ -. c R d ) ) |
87 |
|
iffalse |
|- ( -. c R d -> if ( c R d , c , d ) = d ) |
88 |
86 87
|
simplbiim |
|- ( -. ( d = c \/ c R d ) -> if ( c R d , c , d ) = d ) |
89 |
88
|
eqeq1d |
|- ( -. ( d = c \/ c R d ) -> ( if ( c R d , c , d ) = a <-> d = a ) ) |
90 |
85 89
|
syl6bi |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( d R c -> ( if ( c R d , c , d ) = a <-> d = a ) ) ) |
91 |
90
|
impcom |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( if ( c R d , c , d ) = a <-> d = a ) ) |
92 |
91
|
anbi1d |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( if ( c R d , c , d ) = a /\ c = b ) <-> ( d = a /\ c = b ) ) ) |
93 |
|
olc |
|- ( ( c = b /\ d = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) |
94 |
93
|
ancoms |
|- ( ( d = a /\ c = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) |
95 |
92 94
|
syl6bi |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( if ( c R d , c , d ) = a /\ c = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
96 |
81 95
|
sylbid |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
97 |
96
|
ex |
|- ( d R c -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
98 |
72 75 97
|
3jaoi |
|- ( ( c R d \/ c = d \/ d R c ) -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
99 |
48 98
|
mpcom |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
100 |
99
|
ex |
|- ( R Or V -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
101 |
100
|
ad2antrl |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
102 |
101
|
imp |
|- ( ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = a /\ sup ( { c , d } , V , R ) = b ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
103 |
46 102
|
sylbid |
|- ( ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
104 |
103
|
ex |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
105 |
104
|
a1d |
|- ( ( a R b /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) |
106 |
105
|
ex |
|- ( a R b -> ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) ) |
107 |
|
eqneqall |
|- ( a = b -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) |
108 |
107
|
a1d |
|- ( a = b -> ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) ) |
109 |
30
|
adantl |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> inf ( { a , b } , V , R ) = if ( a R b , a , b ) ) |
110 |
|
sotric |
|- ( ( R Or V /\ ( b e. V /\ a e. V ) ) -> ( b R a <-> -. ( b = a \/ a R b ) ) ) |
111 |
110
|
ancom2s |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( b R a <-> -. ( b = a \/ a R b ) ) ) |
112 |
|
ioran |
|- ( -. ( b = a \/ a R b ) <-> ( -. b = a /\ -. a R b ) ) |
113 |
|
iffalse |
|- ( -. a R b -> if ( a R b , a , b ) = b ) |
114 |
112 113
|
simplbiim |
|- ( -. ( b = a \/ a R b ) -> if ( a R b , a , b ) = b ) |
115 |
111 114
|
syl6bi |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( b R a -> if ( a R b , a , b ) = b ) ) |
116 |
115
|
impcom |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> if ( a R b , a , b ) = b ) |
117 |
109 116
|
eqtrd |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> inf ( { a , b } , V , R ) = b ) |
118 |
117
|
eqeq2d |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) <-> inf ( { c , d } , V , R ) = b ) ) |
119 |
|
iftrue |
|- ( b R a -> if ( b R a , a , b ) = a ) |
120 |
35 119
|
sylan9eqr |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> sup ( { a , b } , V , R ) = a ) |
121 |
120
|
eqeq2d |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) <-> sup ( { c , d } , V , R ) = a ) ) |
122 |
118 121
|
anbi12d |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) <-> ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) ) ) |
123 |
122
|
adantr |
|- ( ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) <-> ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) ) ) |
124 |
55
|
eqeq1d |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( inf ( { c , d } , V , R ) = b <-> c = b ) ) |
125 |
67
|
eqeq1d |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( sup ( { c , d } , V , R ) = a <-> d = a ) ) |
126 |
124 125
|
anbi12d |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) <-> ( c = b /\ d = a ) ) ) |
127 |
126 93
|
syl6bi |
|- ( ( c R d /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
128 |
127
|
ex |
|- ( c R d -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
129 |
|
eqneqall |
|- ( c = d -> ( c =/= d -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
130 |
129
|
adantld |
|- ( c = d -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
131 |
130
|
adantld |
|- ( c = d -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
132 |
85 88
|
syl6bi |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( d R c -> if ( c R d , c , d ) = d ) ) |
133 |
132
|
impcom |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> if ( c R d , c , d ) = d ) |
134 |
76 133
|
eqtrd |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> inf ( { c , d } , V , R ) = d ) |
135 |
134
|
eqeq1d |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( inf ( { c , d } , V , R ) = b <-> d = b ) ) |
136 |
79
|
eqeq1d |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( sup ( { c , d } , V , R ) = a <-> c = a ) ) |
137 |
135 136
|
anbi12d |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) <-> ( d = b /\ c = a ) ) ) |
138 |
70
|
ancoms |
|- ( ( d = b /\ c = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) |
139 |
137 138
|
syl6bi |
|- ( ( d R c /\ ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
140 |
139
|
ex |
|- ( d R c -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
141 |
128 131 140
|
3jaoi |
|- ( ( c R d \/ c = d \/ d R c ) -> ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
142 |
48 141
|
mpcom |
|- ( ( R Or V /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
143 |
142
|
ex |
|- ( R Or V -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
144 |
143
|
ad2antrl |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
145 |
144
|
imp |
|- ( ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = b /\ sup ( { c , d } , V , R ) = a ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
146 |
123 145
|
sylbid |
|- ( ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) /\ ( ( c e. V /\ d e. V ) /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
147 |
146
|
ex |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
148 |
147
|
a1d |
|- ( ( b R a /\ ( R Or V /\ ( a e. V /\ b e. V ) ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) |
149 |
148
|
ex |
|- ( b R a -> ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) ) |
150 |
106 108 149
|
3jaoi |
|- ( ( a R b \/ a = b \/ b R a ) -> ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) ) |
151 |
28 150
|
mpcom |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( a =/= b -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) |
152 |
151
|
adantld |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( ( W = { a , b } /\ a =/= b ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) ) |
153 |
152
|
imp |
|- ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) -> ( ( ( c e. V /\ d e. V ) /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
154 |
153
|
expdimp |
|- ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( c =/= d -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
155 |
154
|
adantld |
|- ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( Z = { c , d } /\ c =/= d ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) ) |
156 |
155
|
imp |
|- ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) ) |
157 |
|
vex |
|- c e. _V |
158 |
|
vex |
|- d e. _V |
159 |
|
vex |
|- a e. _V |
160 |
|
vex |
|- b e. _V |
161 |
157 158 159 160
|
preq12b |
|- ( { c , d } = { a , b } <-> ( ( c = a /\ d = b ) \/ ( c = b /\ d = a ) ) ) |
162 |
156 161
|
syl6ibr |
|- ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( ( inf ( { c , d } , V , R ) = inf ( { a , b } , V , R ) /\ sup ( { c , d } , V , R ) = sup ( { a , b } , V , R ) ) -> { c , d } = { a , b } ) ) |
163 |
27 162
|
sylbid |
|- ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) |
164 |
|
infeq1 |
|- ( Z = { c , d } -> inf ( Z , V , R ) = inf ( { c , d } , V , R ) ) |
165 |
|
supeq1 |
|- ( Z = { c , d } -> sup ( Z , V , R ) = sup ( { c , d } , V , R ) ) |
166 |
164 165
|
opeq12d |
|- ( Z = { c , d } -> <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. ) |
167 |
|
infeq1 |
|- ( W = { a , b } -> inf ( W , V , R ) = inf ( { a , b } , V , R ) ) |
168 |
|
supeq1 |
|- ( W = { a , b } -> sup ( W , V , R ) = sup ( { a , b } , V , R ) ) |
169 |
167 168
|
opeq12d |
|- ( W = { a , b } -> <. inf ( W , V , R ) , sup ( W , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. ) |
170 |
166 169
|
eqeqan12rd |
|- ( ( W = { a , b } /\ Z = { c , d } ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. <-> <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. ) ) |
171 |
|
eqeq12 |
|- ( ( Z = { c , d } /\ W = { a , b } ) -> ( Z = W <-> { c , d } = { a , b } ) ) |
172 |
171
|
ancoms |
|- ( ( W = { a , b } /\ Z = { c , d } ) -> ( Z = W <-> { c , d } = { a , b } ) ) |
173 |
170 172
|
imbi12d |
|- ( ( W = { a , b } /\ Z = { c , d } ) -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) |
174 |
173
|
ex |
|- ( W = { a , b } -> ( Z = { c , d } -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) |
175 |
174
|
ad2antrl |
|- ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) -> ( Z = { c , d } -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) |
176 |
175
|
adantr |
|- ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( Z = { c , d } -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) |
177 |
176
|
com12 |
|- ( Z = { c , d } -> ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) |
178 |
177
|
adantr |
|- ( ( Z = { c , d } /\ c =/= d ) -> ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) ) |
179 |
178
|
impcom |
|- ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) <-> ( <. inf ( { c , d } , V , R ) , sup ( { c , d } , V , R ) >. = <. inf ( { a , b } , V , R ) , sup ( { a , b } , V , R ) >. -> { c , d } = { a , b } ) ) ) |
180 |
163 179
|
mpbird |
|- ( ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) /\ ( Z = { c , d } /\ c =/= d ) ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) |
181 |
180
|
ex |
|- ( ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( Z = { c , d } /\ c =/= d ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) |
182 |
181
|
rexlimdvva |
|- ( ( ( R Or V /\ ( a e. V /\ b e. V ) ) /\ ( W = { a , b } /\ a =/= b ) ) -> ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) |
183 |
182
|
ex |
|- ( ( R Or V /\ ( a e. V /\ b e. V ) ) -> ( ( W = { a , b } /\ a =/= b ) -> ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) |
184 |
183
|
rexlimdvva |
|- ( R Or V -> ( E. a e. V E. b e. V ( W = { a , b } /\ a =/= b ) -> ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) |
185 |
184
|
com13 |
|- ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( E. a e. V E. b e. V ( W = { a , b } /\ a =/= b ) -> ( R Or V -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) |
186 |
20 185
|
syl5bi |
|- ( E. c e. V E. d e. V ( Z = { c , d } /\ c =/= d ) -> ( W e. P -> ( R Or V -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) |
187 |
19 186
|
sylbi |
|- ( Z e. P -> ( W e. P -> ( R Or V -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) ) ) |
188 |
187
|
3imp31 |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> ( <. inf ( Z , V , R ) , sup ( Z , V , R ) >. = <. inf ( W , V , R ) , sup ( W , V , R ) >. -> Z = W ) ) |
189 |
18 188
|
sylbid |
|- ( ( R Or V /\ W e. P /\ Z e. P ) -> ( ( F ` Z ) = ( F ` W ) -> Z = W ) ) |