Metamath Proof Explorer


Theorem prproropf1olem4

Description: Lemma 4 for prproropf1o . (Contributed by AV, 14-Mar-2023)

Ref Expression
Hypotheses prproropf1o.o O = R V × V
prproropf1o.p P = p 𝒫 V | p = 2
prproropf1o.f F = p P sup p V R sup p V R
Assertion prproropf1olem4 R Or V W P Z P F Z = F W Z = W

Proof

Step Hyp Ref Expression
1 prproropf1o.o O = R V × V
2 prproropf1o.p P = p 𝒫 V | p = 2
3 prproropf1o.f F = p P sup p V R sup p V R
4 infeq1 p = Z sup p V R = sup Z V R
5 supeq1 p = Z sup p V R = sup Z V R
6 4 5 opeq12d p = Z sup p V R sup p V R = sup Z V R sup Z V R
7 simp3 R Or V W P Z P Z P
8 opex sup Z V R sup Z V R V
9 8 a1i R Or V W P Z P sup Z V R sup Z V R V
10 3 6 7 9 fvmptd3 R Or V W P Z P F Z = sup Z V R sup Z V R
11 infeq1 p = W sup p V R = sup W V R
12 supeq1 p = W sup p V R = sup W V R
13 11 12 opeq12d p = W sup p V R sup p V R = sup W V R sup W V R
14 simp2 R Or V W P Z P W P
15 opex sup W V R sup W V R V
16 15 a1i R Or V W P Z P sup W V R sup W V R V
17 3 13 14 16 fvmptd3 R Or V W P Z P F W = sup W V R sup W V R
18 10 17 eqeq12d R Or V W P Z P F Z = F W sup Z V R sup Z V R = sup W V R sup W V R
19 2 prpair Z P c V d V Z = c d c d
20 2 prpair W P a V b V W = a b a b
21 id R Or V R Or V
22 21 infexd R Or V sup c d V R V
23 21 supexd R Or V sup c d V R V
24 22 23 jca R Or V sup c d V R V sup c d V R V
25 24 ad4antr R Or V a V b V W = a b a b c V d V Z = c d c d sup c d V R V sup c d V R V
26 opthg sup c d V R V sup c d V R V sup c d V R sup c d V R = sup a b V R sup a b V R sup c d V R = sup a b V R sup c d V R = sup a b V R
27 25 26 syl R Or V a V b V W = a b a b c V d V Z = c d c d sup c d V R sup c d V R = sup a b V R sup a b V R sup c d V R = sup a b V R sup c d V R = sup a b V R
28 solin R Or V a V b V a R b a = b b R a
29 infpr R Or V a V b V sup a b V R = if a R b a b
30 29 3expb R Or V a V b V sup a b V R = if a R b a b
31 iftrue a R b if a R b a b = a
32 30 31 sylan9eqr a R b R Or V a V b V sup a b V R = a
33 32 eqeq2d a R b R Or V a V b V sup c d V R = sup a b V R sup c d V R = a
34 suppr R Or V a V b V sup a b V R = if b R a a b
35 34 3expb R Or V a V b V sup a b V R = if b R a a b
36 35 adantl a R b R Or V a V b V sup a b V R = if b R a a b
37 sotric R Or V a V b V a R b ¬ a = b b R a
38 ioran ¬ a = b b R a ¬ a = b ¬ b R a
39 iffalse ¬ b R a if b R a a b = b
40 38 39 simplbiim ¬ a = b b R a if b R a a b = b
41 37 40 syl6bi R Or V a V b V a R b if b R a a b = b
42 41 impcom a R b R Or V a V b V if b R a a b = b
43 36 42 eqtrd a R b R Or V a V b V sup a b V R = b
44 43 eqeq2d a R b R Or V a V b V sup c d V R = sup a b V R sup c d V R = b
45 33 44 anbi12d a R b R Or V a V b V sup c d V R = sup a b V R sup c d V R = sup a b V R sup c d V R = a sup c d V R = b
46 45 adantr a R b R Or V a V b V c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R sup c d V R = a sup c d V R = b
47 solin R Or V c V d V c R d c = d d R c
48 47 adantrr R Or V c V d V c d c R d c = d d R c
49 simpl R Or V c V d V c d R Or V
50 simprll R Or V c V d V c d c V
51 simprlr R Or V c V d V c d d V
52 infpr R Or V c V d V sup c d V R = if c R d c d
53 49 50 51 52 syl3anc R Or V c V d V c d sup c d V R = if c R d c d
54 iftrue c R d if c R d c d = c
55 53 54 sylan9eqr c R d R Or V c V d V c d sup c d V R = c
56 55 eqeq1d c R d R Or V c V d V c d sup c d V R = a c = a
57 suppr R Or V c V d V sup c d V R = if d R c c d
58 49 50 51 57 syl3anc R Or V c V d V c d sup c d V R = if d R c c d
59 58 adantl c R d R Or V c V d V c d sup c d V R = if d R c c d
60 sotric R Or V c V d V c R d ¬ c = d d R c
61 60 adantrr R Or V c V d V c d c R d ¬ c = d d R c
62 ioran ¬ c = d d R c ¬ c = d ¬ d R c
63 iffalse ¬ d R c if d R c c d = d
64 62 63 simplbiim ¬ c = d d R c if d R c c d = d
65 61 64 syl6bi R Or V c V d V c d c R d if d R c c d = d
66 65 impcom c R d R Or V c V d V c d if d R c c d = d
67 59 66 eqtrd c R d R Or V c V d V c d sup c d V R = d
68 67 eqeq1d c R d R Or V c V d V c d sup c d V R = b d = b
69 56 68 anbi12d c R d R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b
70 orc c = a d = b c = a d = b c = b d = a
71 69 70 syl6bi c R d R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
72 71 ex c R d R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
73 eqneqall c = d c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
74 73 adantld c = d c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
75 74 adantld c = d R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
76 53 adantl d R c R Or V c V d V c d sup c d V R = if c R d c d
77 76 eqeq1d d R c R Or V c V d V c d sup c d V R = a if c R d c d = a
78 iftrue d R c if d R c c d = c
79 58 78 sylan9eqr d R c R Or V c V d V c d sup c d V R = c
80 79 eqeq1d d R c R Or V c V d V c d sup c d V R = b c = b
81 77 80 anbi12d d R c R Or V c V d V c d sup c d V R = a sup c d V R = b if c R d c d = a c = b
82 simpl c V d V c d c V d V
83 82 ancomd c V d V c d d V c V
84 sotric R Or V d V c V d R c ¬ d = c c R d
85 83 84 sylan2 R Or V c V d V c d d R c ¬ d = c c R d
86 ioran ¬ d = c c R d ¬ d = c ¬ c R d
87 iffalse ¬ c R d if c R d c d = d
88 86 87 simplbiim ¬ d = c c R d if c R d c d = d
89 88 eqeq1d ¬ d = c c R d if c R d c d = a d = a
90 85 89 syl6bi R Or V c V d V c d d R c if c R d c d = a d = a
91 90 impcom d R c R Or V c V d V c d if c R d c d = a d = a
92 91 anbi1d d R c R Or V c V d V c d if c R d c d = a c = b d = a c = b
93 olc c = b d = a c = a d = b c = b d = a
94 93 ancoms d = a c = b c = a d = b c = b d = a
95 92 94 syl6bi d R c R Or V c V d V c d if c R d c d = a c = b c = a d = b c = b d = a
96 81 95 sylbid d R c R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
97 96 ex d R c R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
98 72 75 97 3jaoi c R d c = d d R c R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
99 48 98 mpcom R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
100 99 ex R Or V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
101 100 ad2antrl a R b R Or V a V b V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
102 101 imp a R b R Or V a V b V c V d V c d sup c d V R = a sup c d V R = b c = a d = b c = b d = a
103 46 102 sylbid a R b R Or V a V b V c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
104 103 ex a R b R Or V a V b V c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
105 104 a1d a R b R Or V a V b V a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
106 105 ex a R b R Or V a V b V a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
107 eqneqall a = b a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
108 107 a1d a = b R Or V a V b V a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
109 30 adantl b R a R Or V a V b V sup a b V R = if a R b a b
110 sotric R Or V b V a V b R a ¬ b = a a R b
111 110 ancom2s R Or V a V b V b R a ¬ b = a a R b
112 ioran ¬ b = a a R b ¬ b = a ¬ a R b
113 iffalse ¬ a R b if a R b a b = b
114 112 113 simplbiim ¬ b = a a R b if a R b a b = b
115 111 114 syl6bi R Or V a V b V b R a if a R b a b = b
116 115 impcom b R a R Or V a V b V if a R b a b = b
117 109 116 eqtrd b R a R Or V a V b V sup a b V R = b
118 117 eqeq2d b R a R Or V a V b V sup c d V R = sup a b V R sup c d V R = b
119 iftrue b R a if b R a a b = a
120 35 119 sylan9eqr b R a R Or V a V b V sup a b V R = a
121 120 eqeq2d b R a R Or V a V b V sup c d V R = sup a b V R sup c d V R = a
122 118 121 anbi12d b R a R Or V a V b V sup c d V R = sup a b V R sup c d V R = sup a b V R sup c d V R = b sup c d V R = a
123 122 adantr b R a R Or V a V b V c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R sup c d V R = b sup c d V R = a
124 55 eqeq1d c R d R Or V c V d V c d sup c d V R = b c = b
125 67 eqeq1d c R d R Or V c V d V c d sup c d V R = a d = a
126 124 125 anbi12d c R d R Or V c V d V c d sup c d V R = b sup c d V R = a c = b d = a
127 126 93 syl6bi c R d R Or V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
128 127 ex c R d R Or V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
129 eqneqall c = d c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
130 129 adantld c = d c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
131 130 adantld c = d R Or V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
132 85 88 syl6bi R Or V c V d V c d d R c if c R d c d = d
133 132 impcom d R c R Or V c V d V c d if c R d c d = d
134 76 133 eqtrd d R c R Or V c V d V c d sup c d V R = d
135 134 eqeq1d d R c R Or V c V d V c d sup c d V R = b d = b
136 79 eqeq1d d R c R Or V c V d V c d sup c d V R = a c = a
137 135 136 anbi12d d R c R Or V c V d V c d sup c d V R = b sup c d V R = a d = b c = a
138 70 ancoms d = b c = a c = a d = b c = b d = a
139 137 138 syl6bi d R c R Or V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
140 139 ex d R c R Or V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
141 128 131 140 3jaoi c R d c = d d R c R Or V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
142 48 141 mpcom R Or V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
143 142 ex R Or V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
144 143 ad2antrl b R a R Or V a V b V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
145 144 imp b R a R Or V a V b V c V d V c d sup c d V R = b sup c d V R = a c = a d = b c = b d = a
146 123 145 sylbid b R a R Or V a V b V c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
147 146 ex b R a R Or V a V b V c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
148 147 a1d b R a R Or V a V b V a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
149 148 ex b R a R Or V a V b V a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
150 106 108 149 3jaoi a R b a = b b R a R Or V a V b V a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
151 28 150 mpcom R Or V a V b V a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
152 151 adantld R Or V a V b V W = a b a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
153 152 imp R Or V a V b V W = a b a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
154 153 expdimp R Or V a V b V W = a b a b c V d V c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
155 154 adantld R Or V a V b V W = a b a b c V d V Z = c d c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
156 155 imp R Or V a V b V W = a b a b c V d V Z = c d c d sup c d V R = sup a b V R sup c d V R = sup a b V R c = a d = b c = b d = a
157 vex c V
158 vex d V
159 vex a V
160 vex b V
161 157 158 159 160 preq12b c d = a b c = a d = b c = b d = a
162 156 161 syl6ibr R Or V a V b V W = a b a b c V d V Z = c d c d sup c d V R = sup a b V R sup c d V R = sup a b V R c d = a b
163 27 162 sylbid R Or V a V b V W = a b a b c V d V Z = c d c d sup c d V R sup c d V R = sup a b V R sup a b V R c d = a b
164 infeq1 Z = c d sup Z V R = sup c d V R
165 supeq1 Z = c d sup Z V R = sup c d V R
166 164 165 opeq12d Z = c d sup Z V R sup Z V R = sup c d V R sup c d V R
167 infeq1 W = a b sup W V R = sup a b V R
168 supeq1 W = a b sup W V R = sup a b V R
169 167 168 opeq12d W = a b sup W V R sup W V R = sup a b V R sup a b V R
170 166 169 eqeqan12rd W = a b Z = c d sup Z V R sup Z V R = sup W V R sup W V R sup c d V R sup c d V R = sup a b V R sup a b V R
171 eqeq12 Z = c d W = a b Z = W c d = a b
172 171 ancoms W = a b Z = c d Z = W c d = a b
173 170 172 imbi12d W = a b Z = c d sup Z V R sup Z V R = sup W V R sup W V R Z = W sup c d V R sup c d V R = sup a b V R sup a b V R c d = a b
174 173 ex W = a b Z = c d sup Z V R sup Z V R = sup W V R sup W V R Z = W sup c d V R sup c d V R = sup a b V R sup a b V R c d = a b
175 174 ad2antrl R Or V a V b V W = a b a b Z = c d sup Z V R sup Z V R = sup W V R sup W V R Z = W sup c d V R sup c d V R = sup a b V R sup a b V R c d = a b
176 175 adantr R Or V a V b V W = a b a b c V d V Z = c d sup Z V R sup Z V R = sup W V R sup W V R Z = W sup c d V R sup c d V R = sup a b V R sup a b V R c d = a b
177 176 com12 Z = c d R Or V a V b V W = a b a b c V d V sup Z V R sup Z V R = sup W V R sup W V R Z = W sup c d V R sup c d V R = sup a b V R sup a b V R c d = a b
178 177 adantr Z = c d c d R Or V a V b V W = a b a b c V d V sup Z V R sup Z V R = sup W V R sup W V R Z = W sup c d V R sup c d V R = sup a b V R sup a b V R c d = a b
179 178 impcom R Or V a V b V W = a b a b c V d V Z = c d c d sup Z V R sup Z V R = sup W V R sup W V R Z = W sup c d V R sup c d V R = sup a b V R sup a b V R c d = a b
180 163 179 mpbird R Or V a V b V W = a b a b c V d V Z = c d c d sup Z V R sup Z V R = sup W V R sup W V R Z = W
181 180 ex R Or V a V b V W = a b a b c V d V Z = c d c d sup Z V R sup Z V R = sup W V R sup W V R Z = W
182 181 rexlimdvva R Or V a V b V W = a b a b c V d V Z = c d c d sup Z V R sup Z V R = sup W V R sup W V R Z = W
183 182 ex R Or V a V b V W = a b a b c V d V Z = c d c d sup Z V R sup Z V R = sup W V R sup W V R Z = W
184 183 rexlimdvva R Or V a V b V W = a b a b c V d V Z = c d c d sup Z V R sup Z V R = sup W V R sup W V R Z = W
185 184 com13 c V d V Z = c d c d a V b V W = a b a b R Or V sup Z V R sup Z V R = sup W V R sup W V R Z = W
186 20 185 syl5bi c V d V Z = c d c d W P R Or V sup Z V R sup Z V R = sup W V R sup W V R Z = W
187 19 186 sylbi Z P W P R Or V sup Z V R sup Z V R = sup W V R sup W V R Z = W
188 187 3imp31 R Or V W P Z P sup Z V R sup Z V R = sup W V R sup W V R Z = W
189 18 188 sylbid R Or V W P Z P F Z = F W Z = W