| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prproropf1o.o |
|
| 2 |
|
prproropf1o.p |
|
| 3 |
|
prproropf1o.f |
|
| 4 |
|
infeq1 |
|
| 5 |
|
supeq1 |
|
| 6 |
4 5
|
opeq12d |
|
| 7 |
|
simp3 |
|
| 8 |
|
opex |
|
| 9 |
8
|
a1i |
|
| 10 |
3 6 7 9
|
fvmptd3 |
|
| 11 |
|
infeq1 |
|
| 12 |
|
supeq1 |
|
| 13 |
11 12
|
opeq12d |
|
| 14 |
|
simp2 |
|
| 15 |
|
opex |
|
| 16 |
15
|
a1i |
|
| 17 |
3 13 14 16
|
fvmptd3 |
|
| 18 |
10 17
|
eqeq12d |
|
| 19 |
2
|
prpair |
|
| 20 |
2
|
prpair |
|
| 21 |
|
id |
|
| 22 |
21
|
infexd |
|
| 23 |
21
|
supexd |
|
| 24 |
22 23
|
jca |
|
| 25 |
24
|
ad4antr |
|
| 26 |
|
opthg |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
solin |
|
| 29 |
|
infpr |
|
| 30 |
29
|
3expb |
|
| 31 |
|
iftrue |
|
| 32 |
30 31
|
sylan9eqr |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
|
suppr |
|
| 35 |
34
|
3expb |
|
| 36 |
35
|
adantl |
|
| 37 |
|
sotric |
|
| 38 |
|
ioran |
|
| 39 |
|
iffalse |
|
| 40 |
38 39
|
simplbiim |
|
| 41 |
37 40
|
biimtrdi |
|
| 42 |
41
|
impcom |
|
| 43 |
36 42
|
eqtrd |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
33 44
|
anbi12d |
|
| 46 |
45
|
adantr |
|
| 47 |
|
solin |
|
| 48 |
47
|
adantrr |
|
| 49 |
|
simpl |
|
| 50 |
|
simprll |
|
| 51 |
|
simprlr |
|
| 52 |
|
infpr |
|
| 53 |
49 50 51 52
|
syl3anc |
|
| 54 |
|
iftrue |
|
| 55 |
53 54
|
sylan9eqr |
|
| 56 |
55
|
eqeq1d |
|
| 57 |
|
suppr |
|
| 58 |
49 50 51 57
|
syl3anc |
|
| 59 |
58
|
adantl |
|
| 60 |
|
sotric |
|
| 61 |
60
|
adantrr |
|
| 62 |
|
ioran |
|
| 63 |
|
iffalse |
|
| 64 |
62 63
|
simplbiim |
|
| 65 |
61 64
|
biimtrdi |
|
| 66 |
65
|
impcom |
|
| 67 |
59 66
|
eqtrd |
|
| 68 |
67
|
eqeq1d |
|
| 69 |
56 68
|
anbi12d |
|
| 70 |
|
orc |
|
| 71 |
69 70
|
biimtrdi |
|
| 72 |
71
|
ex |
|
| 73 |
|
eqneqall |
|
| 74 |
73
|
adantld |
|
| 75 |
74
|
adantld |
|
| 76 |
53
|
adantl |
|
| 77 |
76
|
eqeq1d |
|
| 78 |
|
iftrue |
|
| 79 |
58 78
|
sylan9eqr |
|
| 80 |
79
|
eqeq1d |
|
| 81 |
77 80
|
anbi12d |
|
| 82 |
|
simpl |
|
| 83 |
82
|
ancomd |
|
| 84 |
|
sotric |
|
| 85 |
83 84
|
sylan2 |
|
| 86 |
|
ioran |
|
| 87 |
|
iffalse |
|
| 88 |
86 87
|
simplbiim |
|
| 89 |
88
|
eqeq1d |
|
| 90 |
85 89
|
biimtrdi |
|
| 91 |
90
|
impcom |
|
| 92 |
91
|
anbi1d |
|
| 93 |
|
olc |
|
| 94 |
93
|
ancoms |
|
| 95 |
92 94
|
biimtrdi |
|
| 96 |
81 95
|
sylbid |
|
| 97 |
96
|
ex |
|
| 98 |
72 75 97
|
3jaoi |
|
| 99 |
48 98
|
mpcom |
|
| 100 |
99
|
ex |
|
| 101 |
100
|
ad2antrl |
|
| 102 |
101
|
imp |
|
| 103 |
46 102
|
sylbid |
|
| 104 |
103
|
ex |
|
| 105 |
104
|
a1d |
|
| 106 |
105
|
ex |
|
| 107 |
|
eqneqall |
|
| 108 |
107
|
a1d |
|
| 109 |
30
|
adantl |
|
| 110 |
|
sotric |
|
| 111 |
110
|
ancom2s |
|
| 112 |
|
ioran |
|
| 113 |
|
iffalse |
|
| 114 |
112 113
|
simplbiim |
|
| 115 |
111 114
|
biimtrdi |
|
| 116 |
115
|
impcom |
|
| 117 |
109 116
|
eqtrd |
|
| 118 |
117
|
eqeq2d |
|
| 119 |
|
iftrue |
|
| 120 |
35 119
|
sylan9eqr |
|
| 121 |
120
|
eqeq2d |
|
| 122 |
118 121
|
anbi12d |
|
| 123 |
122
|
adantr |
|
| 124 |
55
|
eqeq1d |
|
| 125 |
67
|
eqeq1d |
|
| 126 |
124 125
|
anbi12d |
|
| 127 |
126 93
|
biimtrdi |
|
| 128 |
127
|
ex |
|
| 129 |
|
eqneqall |
|
| 130 |
129
|
adantld |
|
| 131 |
130
|
adantld |
|
| 132 |
85 88
|
biimtrdi |
|
| 133 |
132
|
impcom |
|
| 134 |
76 133
|
eqtrd |
|
| 135 |
134
|
eqeq1d |
|
| 136 |
79
|
eqeq1d |
|
| 137 |
135 136
|
anbi12d |
|
| 138 |
70
|
ancoms |
|
| 139 |
137 138
|
biimtrdi |
|
| 140 |
139
|
ex |
|
| 141 |
128 131 140
|
3jaoi |
|
| 142 |
48 141
|
mpcom |
|
| 143 |
142
|
ex |
|
| 144 |
143
|
ad2antrl |
|
| 145 |
144
|
imp |
|
| 146 |
123 145
|
sylbid |
|
| 147 |
146
|
ex |
|
| 148 |
147
|
a1d |
|
| 149 |
148
|
ex |
|
| 150 |
106 108 149
|
3jaoi |
|
| 151 |
28 150
|
mpcom |
|
| 152 |
151
|
adantld |
|
| 153 |
152
|
imp |
|
| 154 |
153
|
expdimp |
|
| 155 |
154
|
adantld |
|
| 156 |
155
|
imp |
|
| 157 |
|
vex |
|
| 158 |
|
vex |
|
| 159 |
|
vex |
|
| 160 |
|
vex |
|
| 161 |
157 158 159 160
|
preq12b |
|
| 162 |
156 161
|
imbitrrdi |
|
| 163 |
27 162
|
sylbid |
|
| 164 |
|
infeq1 |
|
| 165 |
|
supeq1 |
|
| 166 |
164 165
|
opeq12d |
|
| 167 |
|
infeq1 |
|
| 168 |
|
supeq1 |
|
| 169 |
167 168
|
opeq12d |
|
| 170 |
166 169
|
eqeqan12rd |
|
| 171 |
|
eqeq12 |
|
| 172 |
171
|
ancoms |
|
| 173 |
170 172
|
imbi12d |
|
| 174 |
173
|
ex |
|
| 175 |
174
|
ad2antrl |
|
| 176 |
175
|
adantr |
|
| 177 |
176
|
com12 |
|
| 178 |
177
|
adantr |
|
| 179 |
178
|
impcom |
|
| 180 |
163 179
|
mpbird |
|
| 181 |
180
|
ex |
|
| 182 |
181
|
rexlimdvva |
|
| 183 |
182
|
ex |
|
| 184 |
183
|
rexlimdvva |
|
| 185 |
184
|
com13 |
|
| 186 |
20 185
|
biimtrid |
|
| 187 |
19 186
|
sylbi |
|
| 188 |
187
|
3imp31 |
|
| 189 |
18 188
|
sylbid |
|