Metamath Proof Explorer


Theorem prprspr2

Description: The set of all proper unordered pairs over a given set V is the set of all unordered pairs over that set of size two. (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion prprspr2 PrPairsV=pPairsV|p=2

Proof

Step Hyp Ref Expression
1 sprval VVPairsV=p|aVbVp=ab
2 1 eqabrd VVpPairsVaVbVp=ab
3 2 anbi1d VVpPairsVp=2aVbVp=abp=2
4 r19.41vv aVbVp=abp=2aVbVp=abp=2
5 fveqeq2 p=abp=2ab=2
6 hashprg aVbVabab=2
7 6 el2v abab=2
8 5 7 bitr4di p=abp=2ab
9 8 pm5.32i p=abp=2p=abab
10 9 biancomi p=abp=2abp=ab
11 10 a1i VVaVbVp=abp=2abp=ab
12 11 2rexbidva VVaVbVp=abp=2aVbVabp=ab
13 4 12 bitr3id VVaVbVp=abp=2aVbVabp=ab
14 3 13 bitrd VVpPairsVp=2aVbVabp=ab
15 14 abbidv VVp|pPairsVp=2=p|aVbVabp=ab
16 df-rab pPairsV|p=2=p|pPairsVp=2
17 16 a1i VVpPairsV|p=2=p|pPairsVp=2
18 prprval VVPrPairsV=p|aVbVabp=ab
19 15 17 18 3eqtr4rd VVPrPairsV=pPairsV|p=2
20 rab0 p|p=2=
21 20 a1i ¬VVp|p=2=
22 fvprc ¬VVPairsV=
23 22 rabeqdv ¬VVpPairsV|p=2=p|p=2
24 fvprc ¬VVPrPairsV=
25 21 23 24 3eqtr4rd ¬VVPrPairsV=pPairsV|p=2
26 19 25 pm2.61i PrPairsV=pPairsV|p=2