Metamath Proof Explorer


Theorem prrngorngo

Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion prrngorngo RPrRingRRingOps

Proof

Step Hyp Ref Expression
1 eqid 1stR=1stR
2 eqid GId1stR=GId1stR
3 1 2 isprrngo RPrRingRRingOpsGId1stRPrIdlR
4 3 simplbi RPrRingRRingOps