Metamath Proof Explorer


Theorem prrngorngo

Description: A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion prrngorngo R PrRing R RingOps

Proof

Step Hyp Ref Expression
1 eqid 1 st R = 1 st R
2 eqid GId 1 st R = GId 1 st R
3 1 2 isprrngo R PrRing R RingOps GId 1 st R PrIdl R
4 3 simplbi R PrRing R RingOps