Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Prime rings and integral domains
prrngorngo
Next ⟩
smprngopr
Metamath Proof Explorer
Ascii
Unicode
Theorem
prrngorngo
Description:
A prime ring is a ring.
(Contributed by
Jeff Madsen
, 10-Jun-2010)
Ref
Expression
Assertion
prrngorngo
⊢
R
∈
PrRing
→
R
∈
RingOps
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
1
st
⁡
R
=
1
st
⁡
R
2
eqid
⊢
GId
⁡
1
st
⁡
R
=
GId
⁡
1
st
⁡
R
3
1
2
isprrngo
⊢
R
∈
PrRing
↔
R
∈
RingOps
∧
GId
⁡
1
st
⁡
R
∈
PrIdl
⁡
R
4
3
simplbi
⊢
R
∈
PrRing
→
R
∈
RingOps