Metamath Proof Explorer


Theorem prstcval

Description: Lemma for prstcnidlem and prstcthin . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
Assertion prstcval φ C = K sSet Hom ndx K × 1 𝑜 sSet comp ndx

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 id k = K k = K
4 fveq2 k = K k = K
5 4 xpeq1d k = K k × 1 𝑜 = K × 1 𝑜
6 5 opeq2d k = K Hom ndx k × 1 𝑜 = Hom ndx K × 1 𝑜
7 3 6 oveq12d k = K k sSet Hom ndx k × 1 𝑜 = K sSet Hom ndx K × 1 𝑜
8 7 oveq1d k = K k sSet Hom ndx k × 1 𝑜 sSet comp ndx = K sSet Hom ndx K × 1 𝑜 sSet comp ndx
9 df-prstc Could not format ProsetToCat = ( k e. Proset |-> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) : No typesetting found for |- ProsetToCat = ( k e. Proset |-> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) with typecode |-
10 ovex K sSet Hom ndx K × 1 𝑜 sSet comp ndx V
11 8 9 10 fvmpt Could not format ( K e. Proset -> ( ProsetToCat ` K ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) : No typesetting found for |- ( K e. Proset -> ( ProsetToCat ` K ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) with typecode |-
12 2 11 syl Could not format ( ph -> ( ProsetToCat ` K ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) : No typesetting found for |- ( ph -> ( ProsetToCat ` K ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) with typecode |-
13 1 12 eqtrd φ C = K sSet Hom ndx K × 1 𝑜 sSet comp ndx