Metamath Proof Explorer


Theorem ps-2c

Description: Variation of projective geometry axiom ps-2 . (Contributed by NM, 3-Jul-2012)

Ref Expression
Hypotheses 2atm.l ˙=K
2atm.j ˙=joinK
2atm.m ˙=meetK
2atm.a A=AtomsK
Assertion ps-2c KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RP˙R˙S˙TA

Proof

Step Hyp Ref Expression
1 2atm.l ˙=K
2 2atm.j ˙=joinK
3 2atm.m ˙=meetK
4 2atm.a A=AtomsK
5 simp11 KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RKHL
6 simp12 KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RPA
7 simp21 KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RRA
8 5 hllatd KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RKLat
9 eqid BaseK=BaseK
10 9 4 atbase PAPBaseK
11 6 10 syl KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RPBaseK
12 simp13 KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RQA
13 9 4 atbase QAQBaseK
14 12 13 syl KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RQBaseK
15 9 4 atbase RARBaseK
16 7 15 syl KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RRBaseK
17 simp31l KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙R¬P˙Q˙R
18 9 1 2 latnlej1r KLatPBaseKQBaseKRBaseK¬P˙Q˙RPR
19 8 11 14 16 17 18 syl131anc KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RPR
20 eqid LLinesK=LLinesK
21 2 4 20 llni2 KHLPARAPRP˙RLLinesK
22 5 6 7 19 21 syl31anc KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RP˙RLLinesK
23 simp22 KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RSA
24 simp23 KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RTA
25 simp31r KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RST
26 2 4 20 llni2 KHLSATASTS˙TLLinesK
27 5 23 24 25 26 syl31anc KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RS˙TLLinesK
28 simp32 KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RP˙RS˙T
29 simp33 KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RS˙P˙QT˙Q˙R
30 eqid 0.K=0.K
31 1 2 3 30 4 ps-2b KHLPAQARASATA¬P˙Q˙RSTS˙P˙QT˙Q˙RP˙R˙S˙T0.K
32 5 6 12 7 23 24 17 25 29 31 syl333anc KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RP˙R˙S˙T0.K
33 3 30 4 20 2llnmat KHLP˙RLLinesKS˙TLLinesKP˙RS˙TP˙R˙S˙T0.KP˙R˙S˙TA
34 5 22 27 28 32 33 syl32anc KHLPAQARASATA¬P˙Q˙RSTP˙RS˙TS˙P˙QT˙Q˙RP˙R˙S˙TA