Metamath Proof Explorer


Theorem psrelbas

Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrbas.s S=ImPwSerR
psrbas.k K=BaseR
psrbas.d D=f0I|f-1Fin
psrbas.b B=BaseS
psrelbas.x φXB
Assertion psrelbas φX:DK

Proof

Step Hyp Ref Expression
1 psrbas.s S=ImPwSerR
2 psrbas.k K=BaseR
3 psrbas.d D=f0I|f-1Fin
4 psrbas.b B=BaseS
5 psrelbas.x φXB
6 reldmpsr ReldommPwSer
7 6 1 4 elbasov XBIVRV
8 5 7 syl φIVRV
9 8 simpld φIV
10 1 2 3 4 9 psrbas φB=KD
11 5 10 eleqtrd φXKD
12 2 fvexi KV
13 ovex 0IV
14 3 13 rabex2 DV
15 12 14 elmap XKDX:DK
16 11 15 sylib φX:DK