Metamath Proof Explorer


Theorem psubclsubN

Description: A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubclsub.s S=PSubSpK
psubclsub.c C=PSubClK
Assertion psubclsubN KHLXCXS

Proof

Step Hyp Ref Expression
1 psubclsub.s S=PSubSpK
2 psubclsub.c C=PSubClK
3 eqid 𝑃K=𝑃K
4 3 2 psubcli2N KHLXC𝑃K𝑃KX=X
5 eqid AtomsK=AtomsK
6 5 3 2 psubcliN KHLXCXAtomsK𝑃K𝑃KX=X
7 6 simpld KHLXCXAtomsK
8 5 1 3 polsubN KHLXAtomsK𝑃KXS
9 7 8 syldan KHLXC𝑃KXS
10 5 1 psubssat KHL𝑃KXS𝑃KXAtomsK
11 9 10 syldan KHLXC𝑃KXAtomsK
12 5 1 3 polsubN KHL𝑃KXAtomsK𝑃K𝑃KXS
13 11 12 syldan KHLXC𝑃K𝑃KXS
14 4 13 eqeltrrd KHLXCXS