Metamath Proof Explorer


Theorem pwinfig

Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here B is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020)

Ref Expression
Assertion pwinfig x B x B 𝒫 x B A B Fin 𝒫 A B Fin

Proof

Step Hyp Ref Expression
1 pwelg x B x B 𝒫 x B A B 𝒫 A B
2 pwfi A Fin 𝒫 A Fin
3 2 notbii ¬ A Fin ¬ 𝒫 A Fin
4 3 a1i x B x B 𝒫 x B ¬ A Fin ¬ 𝒫 A Fin
5 1 4 anbi12d x B x B 𝒫 x B A B ¬ A Fin 𝒫 A B ¬ 𝒫 A Fin
6 eldif A B Fin A B ¬ A Fin
7 eldif 𝒫 A B Fin 𝒫 A B ¬ 𝒫 A Fin
8 5 6 7 3bitr4g x B x B 𝒫 x B A B Fin 𝒫 A B Fin