Metamath Proof Explorer


Theorem pwsmnd

Description: The structure power of a monoid is a monoid. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypothesis pwsmnd.y Y=R𝑠I
Assertion pwsmnd RMndIVYMnd

Proof

Step Hyp Ref Expression
1 pwsmnd.y Y=R𝑠I
2 eqid ScalarR=ScalarR
3 1 2 pwsval RMndIVY=ScalarR𝑠I×R
4 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
5 simpr RMndIVIV
6 fvexd RMndIVScalarRV
7 fconst6g RMndI×R:IMnd
8 7 adantr RMndIVI×R:IMnd
9 4 5 6 8 prdsmndd RMndIVScalarR𝑠I×RMnd
10 3 9 eqeltrd RMndIVYMnd