Metamath Proof Explorer


Theorem pwsring

Description: A structure power of a ring is a ring. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypothesis pwsring.y Y=R𝑠I
Assertion pwsring RRingIVYRing

Proof

Step Hyp Ref Expression
1 pwsring.y Y=R𝑠I
2 eqid ScalarR=ScalarR
3 1 2 pwsval RRingIVY=ScalarR𝑠I×R
4 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
5 simpr RRingIVIV
6 fvexd RRingIVScalarRV
7 fconst6g RRingI×R:IRing
8 7 adantr RRingIVI×R:IRing
9 4 5 6 8 prdsringd RRingIVScalarR𝑠I×RRing
10 3 9 eqeltrd RRingIVYRing