Metamath Proof Explorer


Theorem pwsvscaval

Description: Scalar multiplication of a single coordinate in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsvscaval.y Y=R𝑠I
pwsvscaval.b B=BaseY
pwsvscaval.s ·˙=R
pwsvscaval.t ˙=Y
pwsvscaval.f F=ScalarR
pwsvscaval.k K=BaseF
pwsvscaval.r φRV
pwsvscaval.i φIW
pwsvscaval.a φAK
pwsvscaval.x φXB
pwsvscaval.j φJI
Assertion pwsvscaval φA˙XJ=A·˙XJ

Proof

Step Hyp Ref Expression
1 pwsvscaval.y Y=R𝑠I
2 pwsvscaval.b B=BaseY
3 pwsvscaval.s ·˙=R
4 pwsvscaval.t ˙=Y
5 pwsvscaval.f F=ScalarR
6 pwsvscaval.k K=BaseF
7 pwsvscaval.r φRV
8 pwsvscaval.i φIW
9 pwsvscaval.a φAK
10 pwsvscaval.x φXB
11 pwsvscaval.j φJI
12 1 2 3 4 5 6 7 8 9 10 pwsvscafval φA˙X=I×A·˙fX
13 12 fveq1d φA˙XJ=I×A·˙fXJ
14 eqid BaseR=BaseR
15 1 14 2 7 8 10 pwselbas φX:IBaseR
16 15 ffnd φXFnI
17 eqidd φJIXJ=XJ
18 8 9 16 17 ofc1 φJII×A·˙fXJ=A·˙XJ
19 11 18 mpdan φI×A·˙fXJ=A·˙XJ
20 13 19 eqtrd φA˙XJ=A·˙XJ