Metamath Proof Explorer


Theorem pwxpndom

Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion pwxpndom ωA¬𝒫AA×A

Proof

Step Hyp Ref Expression
1 pwxpndom2 ωA¬𝒫AA⊔︀A×A
2 reldom Rel
3 2 brrelex2i ωAAV
4 3 3 xpexd ωAA×AV
5 djudoml A×AVAVA×AA×A⊔︀A
6 4 3 5 syl2anc ωAA×AA×A⊔︀A
7 djucomen A×AVAVA×A⊔︀AA⊔︀A×A
8 4 3 7 syl2anc ωAA×A⊔︀AA⊔︀A×A
9 domentr A×AA×A⊔︀AA×A⊔︀AA⊔︀A×AA×AA⊔︀A×A
10 6 8 9 syl2anc ωAA×AA⊔︀A×A
11 domtr 𝒫AA×AA×AA⊔︀A×A𝒫AA⊔︀A×A
12 11 expcom A×AA⊔︀A×A𝒫AA×A𝒫AA⊔︀A×A
13 10 12 syl ωA𝒫AA×A𝒫AA⊔︀A×A
14 1 13 mtod ωA¬𝒫AA×A