Metamath Proof Explorer


Theorem pwxpndom2

Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by AV, 18-Jul-2022)

Ref Expression
Assertion pwxpndom2 ωA¬𝒫AA⊔︀A×A

Proof

Step Hyp Ref Expression
1 pwfseq ωA¬𝒫AnωAn
2 reldom Rel
3 2 brrelex2i ωAAV
4 df1o2 1𝑜=
5 4 oveq2i A1𝑜=A
6 id AVAV
7 0ex V
8 7 a1i AVV
9 6 8 mapsnend AVAA
10 5 9 eqbrtrid AVA1𝑜A
11 ensym A1𝑜AAA1𝑜
12 3 10 11 3syl ωAAA1𝑜
13 map2xp AVA2𝑜A×A
14 ensym A2𝑜A×AA×AA2𝑜
15 3 13 14 3syl ωAA×AA2𝑜
16 elmapi xA1𝑜x:1𝑜A
17 16 fdmd xA1𝑜domx=1𝑜
18 17 adantr xA1𝑜xA2𝑜domx=1𝑜
19 1oex 1𝑜V
20 19 sucid 1𝑜suc1𝑜
21 df-2o 2𝑜=suc1𝑜
22 20 21 eleqtrri 1𝑜2𝑜
23 1on 1𝑜On
24 23 onirri ¬1𝑜1𝑜
25 nelneq2 1𝑜2𝑜¬1𝑜1𝑜¬2𝑜=1𝑜
26 22 24 25 mp2an ¬2𝑜=1𝑜
27 elmapi xA2𝑜x:2𝑜A
28 27 fdmd xA2𝑜domx=2𝑜
29 28 adantl xA1𝑜xA2𝑜domx=2𝑜
30 29 eqeq1d xA1𝑜xA2𝑜domx=1𝑜2𝑜=1𝑜
31 26 30 mtbiri xA1𝑜xA2𝑜¬domx=1𝑜
32 18 31 pm2.65i ¬xA1𝑜xA2𝑜
33 elin xA1𝑜A2𝑜xA1𝑜xA2𝑜
34 32 33 mtbir ¬xA1𝑜A2𝑜
35 34 a1i ωA¬xA1𝑜A2𝑜
36 35 eq0rdv ωAA1𝑜A2𝑜=
37 djuenun AA1𝑜A×AA2𝑜A1𝑜A2𝑜=A⊔︀A×AA1𝑜A2𝑜
38 12 15 36 37 syl3anc ωAA⊔︀A×AA1𝑜A2𝑜
39 omex ωV
40 ovex AnV
41 39 40 iunex nωAnV
42 1onn 1𝑜ω
43 oveq2 n=1𝑜An=A1𝑜
44 43 ssiun2s 1𝑜ωA1𝑜nωAn
45 42 44 ax-mp A1𝑜nωAn
46 2onn 2𝑜ω
47 oveq2 n=2𝑜An=A2𝑜
48 47 ssiun2s 2𝑜ωA2𝑜nωAn
49 46 48 ax-mp A2𝑜nωAn
50 45 49 unssi A1𝑜A2𝑜nωAn
51 ssdomg nωAnVA1𝑜A2𝑜nωAnA1𝑜A2𝑜nωAn
52 41 50 51 mp2 A1𝑜A2𝑜nωAn
53 endomtr A⊔︀A×AA1𝑜A2𝑜A1𝑜A2𝑜nωAnA⊔︀A×AnωAn
54 38 52 53 sylancl ωAA⊔︀A×AnωAn
55 domtr 𝒫AA⊔︀A×AA⊔︀A×AnωAn𝒫AnωAn
56 55 expcom A⊔︀A×AnωAn𝒫AA⊔︀A×A𝒫AnωAn
57 54 56 syl ωA𝒫AA⊔︀A×A𝒫AnωAn
58 1 57 mtod ωA¬𝒫AA⊔︀A×A