Metamath Proof Explorer


Theorem pwxpndom2

Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by AV, 18-Jul-2022)

Ref Expression
Assertion pwxpndom2 ω A ¬ 𝒫 A A ⊔︀ A × A

Proof

Step Hyp Ref Expression
1 pwfseq ω A ¬ 𝒫 A n ω A n
2 reldom Rel
3 2 brrelex2i ω A A V
4 df1o2 1 𝑜 =
5 4 oveq2i A 1 𝑜 = A
6 id A V A V
7 0ex V
8 7 a1i A V V
9 6 8 mapsnend A V A A
10 5 9 eqbrtrid A V A 1 𝑜 A
11 ensym A 1 𝑜 A A A 1 𝑜
12 3 10 11 3syl ω A A A 1 𝑜
13 map2xp A V A 2 𝑜 A × A
14 ensym A 2 𝑜 A × A A × A A 2 𝑜
15 3 13 14 3syl ω A A × A A 2 𝑜
16 elmapi x A 1 𝑜 x : 1 𝑜 A
17 16 fdmd x A 1 𝑜 dom x = 1 𝑜
18 17 adantr x A 1 𝑜 x A 2 𝑜 dom x = 1 𝑜
19 1oex 1 𝑜 V
20 19 sucid 1 𝑜 suc 1 𝑜
21 df-2o 2 𝑜 = suc 1 𝑜
22 20 21 eleqtrri 1 𝑜 2 𝑜
23 1on 1 𝑜 On
24 23 onirri ¬ 1 𝑜 1 𝑜
25 nelneq2 1 𝑜 2 𝑜 ¬ 1 𝑜 1 𝑜 ¬ 2 𝑜 = 1 𝑜
26 22 24 25 mp2an ¬ 2 𝑜 = 1 𝑜
27 elmapi x A 2 𝑜 x : 2 𝑜 A
28 27 fdmd x A 2 𝑜 dom x = 2 𝑜
29 28 adantl x A 1 𝑜 x A 2 𝑜 dom x = 2 𝑜
30 29 eqeq1d x A 1 𝑜 x A 2 𝑜 dom x = 1 𝑜 2 𝑜 = 1 𝑜
31 26 30 mtbiri x A 1 𝑜 x A 2 𝑜 ¬ dom x = 1 𝑜
32 18 31 pm2.65i ¬ x A 1 𝑜 x A 2 𝑜
33 elin x A 1 𝑜 A 2 𝑜 x A 1 𝑜 x A 2 𝑜
34 32 33 mtbir ¬ x A 1 𝑜 A 2 𝑜
35 34 a1i ω A ¬ x A 1 𝑜 A 2 𝑜
36 35 eq0rdv ω A A 1 𝑜 A 2 𝑜 =
37 djuenun A A 1 𝑜 A × A A 2 𝑜 A 1 𝑜 A 2 𝑜 = A ⊔︀ A × A A 1 𝑜 A 2 𝑜
38 12 15 36 37 syl3anc ω A A ⊔︀ A × A A 1 𝑜 A 2 𝑜
39 omex ω V
40 ovex A n V
41 39 40 iunex n ω A n V
42 1onn 1 𝑜 ω
43 oveq2 n = 1 𝑜 A n = A 1 𝑜
44 43 ssiun2s 1 𝑜 ω A 1 𝑜 n ω A n
45 42 44 ax-mp A 1 𝑜 n ω A n
46 2onn 2 𝑜 ω
47 oveq2 n = 2 𝑜 A n = A 2 𝑜
48 47 ssiun2s 2 𝑜 ω A 2 𝑜 n ω A n
49 46 48 ax-mp A 2 𝑜 n ω A n
50 45 49 unssi A 1 𝑜 A 2 𝑜 n ω A n
51 ssdomg n ω A n V A 1 𝑜 A 2 𝑜 n ω A n A 1 𝑜 A 2 𝑜 n ω A n
52 41 50 51 mp2 A 1 𝑜 A 2 𝑜 n ω A n
53 endomtr A ⊔︀ A × A A 1 𝑜 A 2 𝑜 A 1 𝑜 A 2 𝑜 n ω A n A ⊔︀ A × A n ω A n
54 38 52 53 sylancl ω A A ⊔︀ A × A n ω A n
55 domtr 𝒫 A A ⊔︀ A × A A ⊔︀ A × A n ω A n 𝒫 A n ω A n
56 55 expcom A ⊔︀ A × A n ω A n 𝒫 A A ⊔︀ A × A 𝒫 A n ω A n
57 54 56 syl ω A 𝒫 A A ⊔︀ A × A 𝒫 A n ω A n
58 1 57 mtod ω A ¬ 𝒫 A A ⊔︀ A × A