Metamath Proof Explorer


Theorem pwxpndom2

Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by AV, 18-Jul-2022)

Ref Expression
Assertion pwxpndom2 ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 pwfseq ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
2 reldom Rel ≼
3 2 brrelex2i ( ω ≼ 𝐴𝐴 ∈ V )
4 df1o2 1o = { ∅ }
5 4 oveq2i ( 𝐴m 1o ) = ( 𝐴m { ∅ } )
6 id ( 𝐴 ∈ V → 𝐴 ∈ V )
7 0ex ∅ ∈ V
8 7 a1i ( 𝐴 ∈ V → ∅ ∈ V )
9 6 8 mapsnend ( 𝐴 ∈ V → ( 𝐴m { ∅ } ) ≈ 𝐴 )
10 5 9 eqbrtrid ( 𝐴 ∈ V → ( 𝐴m 1o ) ≈ 𝐴 )
11 ensym ( ( 𝐴m 1o ) ≈ 𝐴𝐴 ≈ ( 𝐴m 1o ) )
12 3 10 11 3syl ( ω ≼ 𝐴𝐴 ≈ ( 𝐴m 1o ) )
13 map2xp ( 𝐴 ∈ V → ( 𝐴m 2o ) ≈ ( 𝐴 × 𝐴 ) )
14 ensym ( ( 𝐴m 2o ) ≈ ( 𝐴 × 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ ( 𝐴m 2o ) )
15 3 13 14 3syl ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ≈ ( 𝐴m 2o ) )
16 elmapi ( 𝑥 ∈ ( 𝐴m 1o ) → 𝑥 : 1o𝐴 )
17 16 fdmd ( 𝑥 ∈ ( 𝐴m 1o ) → dom 𝑥 = 1o )
18 17 adantr ( ( 𝑥 ∈ ( 𝐴m 1o ) ∧ 𝑥 ∈ ( 𝐴m 2o ) ) → dom 𝑥 = 1o )
19 1oex 1o ∈ V
20 19 sucid 1o ∈ suc 1o
21 df-2o 2o = suc 1o
22 20 21 eleqtrri 1o ∈ 2o
23 1on 1o ∈ On
24 23 onirri ¬ 1o ∈ 1o
25 nelneq2 ( ( 1o ∈ 2o ∧ ¬ 1o ∈ 1o ) → ¬ 2o = 1o )
26 22 24 25 mp2an ¬ 2o = 1o
27 elmapi ( 𝑥 ∈ ( 𝐴m 2o ) → 𝑥 : 2o𝐴 )
28 27 fdmd ( 𝑥 ∈ ( 𝐴m 2o ) → dom 𝑥 = 2o )
29 28 adantl ( ( 𝑥 ∈ ( 𝐴m 1o ) ∧ 𝑥 ∈ ( 𝐴m 2o ) ) → dom 𝑥 = 2o )
30 29 eqeq1d ( ( 𝑥 ∈ ( 𝐴m 1o ) ∧ 𝑥 ∈ ( 𝐴m 2o ) ) → ( dom 𝑥 = 1o ↔ 2o = 1o ) )
31 26 30 mtbiri ( ( 𝑥 ∈ ( 𝐴m 1o ) ∧ 𝑥 ∈ ( 𝐴m 2o ) ) → ¬ dom 𝑥 = 1o )
32 18 31 pm2.65i ¬ ( 𝑥 ∈ ( 𝐴m 1o ) ∧ 𝑥 ∈ ( 𝐴m 2o ) )
33 elin ( 𝑥 ∈ ( ( 𝐴m 1o ) ∩ ( 𝐴m 2o ) ) ↔ ( 𝑥 ∈ ( 𝐴m 1o ) ∧ 𝑥 ∈ ( 𝐴m 2o ) ) )
34 32 33 mtbir ¬ 𝑥 ∈ ( ( 𝐴m 1o ) ∩ ( 𝐴m 2o ) )
35 34 a1i ( ω ≼ 𝐴 → ¬ 𝑥 ∈ ( ( 𝐴m 1o ) ∩ ( 𝐴m 2o ) ) )
36 35 eq0rdv ( ω ≼ 𝐴 → ( ( 𝐴m 1o ) ∩ ( 𝐴m 2o ) ) = ∅ )
37 djuenun ( ( 𝐴 ≈ ( 𝐴m 1o ) ∧ ( 𝐴 × 𝐴 ) ≈ ( 𝐴m 2o ) ∧ ( ( 𝐴m 1o ) ∩ ( 𝐴m 2o ) ) = ∅ ) → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴m 1o ) ∪ ( 𝐴m 2o ) ) )
38 12 15 36 37 syl3anc ( ω ≼ 𝐴 → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴m 1o ) ∪ ( 𝐴m 2o ) ) )
39 omex ω ∈ V
40 ovex ( 𝐴m 𝑛 ) ∈ V
41 39 40 iunex 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∈ V
42 1onn 1o ∈ ω
43 oveq2 ( 𝑛 = 1o → ( 𝐴m 𝑛 ) = ( 𝐴m 1o ) )
44 43 ssiun2s ( 1o ∈ ω → ( 𝐴m 1o ) ⊆ 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
45 42 44 ax-mp ( 𝐴m 1o ) ⊆ 𝑛 ∈ ω ( 𝐴m 𝑛 )
46 2onn 2o ∈ ω
47 oveq2 ( 𝑛 = 2o → ( 𝐴m 𝑛 ) = ( 𝐴m 2o ) )
48 47 ssiun2s ( 2o ∈ ω → ( 𝐴m 2o ) ⊆ 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
49 46 48 ax-mp ( 𝐴m 2o ) ⊆ 𝑛 ∈ ω ( 𝐴m 𝑛 )
50 45 49 unssi ( ( 𝐴m 1o ) ∪ ( 𝐴m 2o ) ) ⊆ 𝑛 ∈ ω ( 𝐴m 𝑛 )
51 ssdomg ( 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∈ V → ( ( ( 𝐴m 1o ) ∪ ( 𝐴m 2o ) ) ⊆ 𝑛 ∈ ω ( 𝐴m 𝑛 ) → ( ( 𝐴m 1o ) ∪ ( 𝐴m 2o ) ) ≼ 𝑛 ∈ ω ( 𝐴m 𝑛 ) ) )
52 41 50 51 mp2 ( ( 𝐴m 1o ) ∪ ( 𝐴m 2o ) ) ≼ 𝑛 ∈ ω ( 𝐴m 𝑛 )
53 endomtr ( ( ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴m 1o ) ∪ ( 𝐴m 2o ) ) ∧ ( ( 𝐴m 1o ) ∪ ( 𝐴m 2o ) ) ≼ 𝑛 ∈ ω ( 𝐴m 𝑛 ) ) → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
54 38 52 53 sylancl ( ω ≼ 𝐴 → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
55 domtr ( ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ∧ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ 𝑛 ∈ ω ( 𝐴m 𝑛 ) ) → 𝒫 𝐴 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
56 55 expcom ( ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ 𝑛 ∈ ω ( 𝐴m 𝑛 ) → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → 𝒫 𝐴 𝑛 ∈ ω ( 𝐴m 𝑛 ) ) )
57 54 56 syl ( ω ≼ 𝐴 → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → 𝒫 𝐴 𝑛 ∈ ω ( 𝐴m 𝑛 ) ) )
58 1 57 mtod ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) )