Step |
Hyp |
Ref |
Expression |
1 |
|
pwfseq |
⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
2 |
|
reldom |
⊢ Rel ≼ |
3 |
2
|
brrelex2i |
⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
4 |
|
df1o2 |
⊢ 1o = { ∅ } |
5 |
4
|
oveq2i |
⊢ ( 𝐴 ↑m 1o ) = ( 𝐴 ↑m { ∅ } ) |
6 |
|
id |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ V ) |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ V → ∅ ∈ V ) |
9 |
6 8
|
mapsnend |
⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m { ∅ } ) ≈ 𝐴 ) |
10 |
5 9
|
eqbrtrid |
⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m 1o ) ≈ 𝐴 ) |
11 |
|
ensym |
⊢ ( ( 𝐴 ↑m 1o ) ≈ 𝐴 → 𝐴 ≈ ( 𝐴 ↑m 1o ) ) |
12 |
3 10 11
|
3syl |
⊢ ( ω ≼ 𝐴 → 𝐴 ≈ ( 𝐴 ↑m 1o ) ) |
13 |
|
map2xp |
⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m 2o ) ≈ ( 𝐴 × 𝐴 ) ) |
14 |
|
ensym |
⊢ ( ( 𝐴 ↑m 2o ) ≈ ( 𝐴 × 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ ( 𝐴 ↑m 2o ) ) |
15 |
3 13 14
|
3syl |
⊢ ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ≈ ( 𝐴 ↑m 2o ) ) |
16 |
|
elmapi |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m 1o ) → 𝑥 : 1o ⟶ 𝐴 ) |
17 |
16
|
fdmd |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m 1o ) → dom 𝑥 = 1o ) |
18 |
17
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) → dom 𝑥 = 1o ) |
19 |
|
1oex |
⊢ 1o ∈ V |
20 |
19
|
sucid |
⊢ 1o ∈ suc 1o |
21 |
|
df-2o |
⊢ 2o = suc 1o |
22 |
20 21
|
eleqtrri |
⊢ 1o ∈ 2o |
23 |
|
1on |
⊢ 1o ∈ On |
24 |
23
|
onirri |
⊢ ¬ 1o ∈ 1o |
25 |
|
nelneq2 |
⊢ ( ( 1o ∈ 2o ∧ ¬ 1o ∈ 1o ) → ¬ 2o = 1o ) |
26 |
22 24 25
|
mp2an |
⊢ ¬ 2o = 1o |
27 |
|
elmapi |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m 2o ) → 𝑥 : 2o ⟶ 𝐴 ) |
28 |
27
|
fdmd |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m 2o ) → dom 𝑥 = 2o ) |
29 |
28
|
adantl |
⊢ ( ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) → dom 𝑥 = 2o ) |
30 |
29
|
eqeq1d |
⊢ ( ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) → ( dom 𝑥 = 1o ↔ 2o = 1o ) ) |
31 |
26 30
|
mtbiri |
⊢ ( ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) → ¬ dom 𝑥 = 1o ) |
32 |
18 31
|
pm2.65i |
⊢ ¬ ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) |
33 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) ↔ ( 𝑥 ∈ ( 𝐴 ↑m 1o ) ∧ 𝑥 ∈ ( 𝐴 ↑m 2o ) ) ) |
34 |
32 33
|
mtbir |
⊢ ¬ 𝑥 ∈ ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) |
35 |
34
|
a1i |
⊢ ( ω ≼ 𝐴 → ¬ 𝑥 ∈ ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) ) |
36 |
35
|
eq0rdv |
⊢ ( ω ≼ 𝐴 → ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) = ∅ ) |
37 |
|
djuenun |
⊢ ( ( 𝐴 ≈ ( 𝐴 ↑m 1o ) ∧ ( 𝐴 × 𝐴 ) ≈ ( 𝐴 ↑m 2o ) ∧ ( ( 𝐴 ↑m 1o ) ∩ ( 𝐴 ↑m 2o ) ) = ∅ ) → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ) |
38 |
12 15 36 37
|
syl3anc |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ) |
39 |
|
omex |
⊢ ω ∈ V |
40 |
|
ovex |
⊢ ( 𝐴 ↑m 𝑛 ) ∈ V |
41 |
39 40
|
iunex |
⊢ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ V |
42 |
|
1onn |
⊢ 1o ∈ ω |
43 |
|
oveq2 |
⊢ ( 𝑛 = 1o → ( 𝐴 ↑m 𝑛 ) = ( 𝐴 ↑m 1o ) ) |
44 |
43
|
ssiun2s |
⊢ ( 1o ∈ ω → ( 𝐴 ↑m 1o ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
45 |
42 44
|
ax-mp |
⊢ ( 𝐴 ↑m 1o ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) |
46 |
|
2onn |
⊢ 2o ∈ ω |
47 |
|
oveq2 |
⊢ ( 𝑛 = 2o → ( 𝐴 ↑m 𝑛 ) = ( 𝐴 ↑m 2o ) ) |
48 |
47
|
ssiun2s |
⊢ ( 2o ∈ ω → ( 𝐴 ↑m 2o ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
49 |
46 48
|
ax-mp |
⊢ ( 𝐴 ↑m 2o ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) |
50 |
45 49
|
unssi |
⊢ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) |
51 |
|
ssdomg |
⊢ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∈ V → ( ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ⊆ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
52 |
41 50 51
|
mp2 |
⊢ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) |
53 |
|
endomtr |
⊢ ( ( ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≈ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ∧ ( ( 𝐴 ↑m 1o ) ∪ ( 𝐴 ↑m 2o ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
54 |
38 52 53
|
sylancl |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
55 |
|
domtr |
⊢ ( ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ∧ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) → 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
56 |
55
|
expcom |
⊢ ( ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
57 |
54 56
|
syl |
⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) ) |
58 |
1 57
|
mtod |
⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |