Metamath Proof Explorer


Theorem pythagtriplem17

Description: Lemma for pythagtrip . Show the relationship between M , N , and C . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses pythagtriplem15.1 M=C+B+CB2
pythagtriplem15.2 N=C+BCB2
Assertion pythagtriplem17 ABCA2+B2=C2AgcdB=1¬2AC=M2+N2

Proof

Step Hyp Ref Expression
1 pythagtriplem15.1 M=C+B+CB2
2 pythagtriplem15.2 N=C+BCB2
3 1 pythagtriplem12 ABCA2+B2=C2AgcdB=1¬2AM2=C+A2
4 2 pythagtriplem14 ABCA2+B2=C2AgcdB=1¬2AN2=CA2
5 3 4 oveq12d ABCA2+B2=C2AgcdB=1¬2AM2+N2=C+A2+CA2
6 nncn CC
7 6 3ad2ant3 ABCC
8 7 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC
9 nncn AA
10 9 3ad2ant1 ABCA
11 10 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA
12 8 11 addcld ABCA2+B2=C2AgcdB=1¬2AC+A
13 8 11 subcld ABCA2+B2=C2AgcdB=1¬2ACA
14 2cnne0 220
15 divdir C+ACA220C+A+CA2=C+A2+CA2
16 14 15 mp3an3 C+ACAC+A+CA2=C+A2+CA2
17 12 13 16 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+A+CA2=C+A2+CA2
18 5 17 eqtr4d ABCA2+B2=C2AgcdB=1¬2AM2+N2=C+A+CA2
19 8 11 8 ppncand ABCA2+B2=C2AgcdB=1¬2AC+A+CA=C+C
20 8 2timesd ABCA2+B2=C2AgcdB=1¬2A2C=C+C
21 19 20 eqtr4d ABCA2+B2=C2AgcdB=1¬2AC+A+CA=2C
22 21 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+A+CA2=2C2
23 2cn 2
24 2ne0 20
25 divcan3 C2202C2=C
26 23 24 25 mp3an23 C2C2=C
27 8 26 syl ABCA2+B2=C2AgcdB=1¬2A2C2=C
28 18 22 27 3eqtrrd ABCA2+B2=C2AgcdB=1¬2AC=M2+N2