Description: Lemma for pythagtrip . Show the relationship between M , N , and C . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pythagtriplem15.1 | |
|
pythagtriplem15.2 | |
||
Assertion | pythagtriplem17 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pythagtriplem15.1 | |
|
2 | pythagtriplem15.2 | |
|
3 | 1 | pythagtriplem12 | |
4 | 2 | pythagtriplem14 | |
5 | 3 4 | oveq12d | |
6 | nncn | |
|
7 | 6 | 3ad2ant3 | |
8 | 7 | 3ad2ant1 | |
9 | nncn | |
|
10 | 9 | 3ad2ant1 | |
11 | 10 | 3ad2ant1 | |
12 | 8 11 | addcld | |
13 | 8 11 | subcld | |
14 | 2cnne0 | |
|
15 | divdir | |
|
16 | 14 15 | mp3an3 | |
17 | 12 13 16 | syl2anc | |
18 | 5 17 | eqtr4d | |
19 | 8 11 8 | ppncand | |
20 | 8 | 2timesd | |
21 | 19 20 | eqtr4d | |
22 | 21 | oveq1d | |
23 | 2cn | |
|
24 | 2ne0 | |
|
25 | divcan3 | |
|
26 | 23 24 25 | mp3an23 | |
27 | 8 26 | syl | |
28 | 18 22 27 | 3eqtrrd | |