Metamath Proof Explorer


Theorem pythagtriplem18

Description: Lemma for pythagtrip . Wrap the previous M and N up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem18 ABCA2+B2=C2AgcdB=1¬2AnmA=m2n2B=2mnC=m2+n2

Proof

Step Hyp Ref Expression
1 eqid C+BCB2=C+BCB2
2 1 pythagtriplem13 ABCA2+B2=C2AgcdB=1¬2AC+BCB2
3 eqid C+B+CB2=C+B+CB2
4 3 pythagtriplem11 ABCA2+B2=C2AgcdB=1¬2AC+B+CB2
5 3 1 pythagtriplem15 ABCA2+B2=C2AgcdB=1¬2AA=C+B+CB22C+BCB22
6 3 1 pythagtriplem16 ABCA2+B2=C2AgcdB=1¬2AB=2C+B+CB2C+BCB2
7 3 1 pythagtriplem17 ABCA2+B2=C2AgcdB=1¬2AC=C+B+CB22+C+BCB22
8 oveq1 n=C+BCB2n2=C+BCB22
9 8 oveq2d n=C+BCB2m2n2=m2C+BCB22
10 9 eqeq2d n=C+BCB2A=m2n2A=m2C+BCB22
11 oveq2 n=C+BCB2mn=mC+BCB2
12 11 oveq2d n=C+BCB22mn=2mC+BCB2
13 12 eqeq2d n=C+BCB2B=2mnB=2mC+BCB2
14 8 oveq2d n=C+BCB2m2+n2=m2+C+BCB22
15 14 eqeq2d n=C+BCB2C=m2+n2C=m2+C+BCB22
16 10 13 15 3anbi123d n=C+BCB2A=m2n2B=2mnC=m2+n2A=m2C+BCB22B=2mC+BCB2C=m2+C+BCB22
17 oveq1 m=C+B+CB2m2=C+B+CB22
18 17 oveq1d m=C+B+CB2m2C+BCB22=C+B+CB22C+BCB22
19 18 eqeq2d m=C+B+CB2A=m2C+BCB22A=C+B+CB22C+BCB22
20 oveq1 m=C+B+CB2mC+BCB2=C+B+CB2C+BCB2
21 20 oveq2d m=C+B+CB22mC+BCB2=2C+B+CB2C+BCB2
22 21 eqeq2d m=C+B+CB2B=2mC+BCB2B=2C+B+CB2C+BCB2
23 17 oveq1d m=C+B+CB2m2+C+BCB22=C+B+CB22+C+BCB22
24 23 eqeq2d m=C+B+CB2C=m2+C+BCB22C=C+B+CB22+C+BCB22
25 19 22 24 3anbi123d m=C+B+CB2A=m2C+BCB22B=2mC+BCB2C=m2+C+BCB22A=C+B+CB22C+BCB22B=2C+B+CB2C+BCB2C=C+B+CB22+C+BCB22
26 16 25 rspc2ev C+BCB2C+B+CB2A=C+B+CB22C+BCB22B=2C+B+CB2C+BCB2C=C+B+CB22+C+BCB22nmA=m2n2B=2mnC=m2+n2
27 2 4 5 6 7 26 syl113anc ABCA2+B2=C2AgcdB=1¬2AnmA=m2n2B=2mnC=m2+n2