Description: Lemma for pythagtrip . Wrap the previous M and N up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pythagtriplem18 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | pythagtriplem13 | |
3 | eqid | |
|
4 | 3 | pythagtriplem11 | |
5 | 3 1 | pythagtriplem15 | |
6 | 3 1 | pythagtriplem16 | |
7 | 3 1 | pythagtriplem17 | |
8 | oveq1 | |
|
9 | 8 | oveq2d | |
10 | 9 | eqeq2d | |
11 | oveq2 | |
|
12 | 11 | oveq2d | |
13 | 12 | eqeq2d | |
14 | 8 | oveq2d | |
15 | 14 | eqeq2d | |
16 | 10 13 15 | 3anbi123d | |
17 | oveq1 | |
|
18 | 17 | oveq1d | |
19 | 18 | eqeq2d | |
20 | oveq1 | |
|
21 | 20 | oveq2d | |
22 | 21 | eqeq2d | |
23 | 17 | oveq1d | |
24 | 23 | eqeq2d | |
25 | 19 22 24 | 3anbi123d | |
26 | 16 25 | rspc2ev | |
27 | 2 4 5 6 7 26 | syl113anc | |