Metamath Proof Explorer


Theorem pythagtriplem16

Description: Lemma for pythagtrip . Show the relationship between M , N , and B . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses pythagtriplem15.1 M=C+B+CB2
pythagtriplem15.2 N=C+BCB2
Assertion pythagtriplem16 ABCA2+B2=C2AgcdB=1¬2AB=2 M N

Proof

Step Hyp Ref Expression
1 pythagtriplem15.1 M=C+B+CB2
2 pythagtriplem15.2 N=C+BCB2
3 1 2 oveq12i M N=C+B+CB2C+BCB2
4 nncn CC
5 nncn BB
6 addcl CBC+B
7 4 5 6 syl2anr BCC+B
8 7 sqrtcld BCC+B
9 subcl CBCB
10 4 5 9 syl2anr BCCB
11 10 sqrtcld BCCB
12 addcl C+BCBC+B+CB
13 8 11 12 syl2anc BCC+B+CB
14 13 3adant1 ABCC+B+CB
15 14 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B+CB
16 subcl C+BCBC+BCB
17 8 11 16 syl2anc BCC+BCB
18 17 3adant1 ABCC+BCB
19 18 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+BCB
20 2cnne0 220
21 divmuldiv C+B+CBC+BCB220220C+B+CB2C+BCB2=C+B+CBC+BCB22
22 20 20 21 mpanr12 C+B+CBC+BCBC+B+CB2C+BCB2=C+B+CBC+BCB22
23 15 19 22 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+B+CB2C+BCB2=C+B+CBC+BCB22
24 13 17 mulcld BCC+B+CBC+BCB
25 24 3adant1 ABCC+B+CBC+BCB
26 25 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B+CBC+BCB
27 divdiv1 C+B+CBC+BCB220220C+B+CBC+BCB22=C+B+CBC+BCB22
28 20 20 27 mp3an23 C+B+CBC+BCBC+B+CBC+BCB22=C+B+CBC+BCB22
29 26 28 syl ABCA2+B2=C2AgcdB=1¬2AC+B+CBC+BCB22=C+B+CBC+BCB22
30 23 29 eqtr4d ABCA2+B2=C2AgcdB=1¬2AC+B+CB2C+BCB2=C+B+CBC+BCB22
31 nnre CC
32 nnre BB
33 readdcl CBC+B
34 31 32 33 syl2anr BCC+B
35 34 3adant1 ABCC+B
36 35 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B
37 31 adantl BCC
38 32 adantr BCB
39 nngt0 C0<C
40 39 adantl BC0<C
41 nngt0 B0<B
42 41 adantr BC0<B
43 37 38 40 42 addgt0d BC0<C+B
44 0re 0
45 ltle 0C+B0<C+B0C+B
46 44 45 mpan C+B0<C+B0C+B
47 34 43 46 sylc BC0C+B
48 47 3adant1 ABC0C+B
49 48 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2A0C+B
50 resqrtth C+B0C+BC+B2=C+B
51 36 49 50 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+B2=C+B
52 resubcl CBCB
53 31 32 52 syl2anr BCCB
54 53 3adant1 ABCCB
55 54 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2ACB
56 pythagtriplem10 ABCA2+B2=C20<CB
57 56 3adant3 ABCA2+B2=C2AgcdB=1¬2A0<CB
58 ltle 0CB0<CB0CB
59 44 58 mpan CB0<CB0CB
60 55 57 59 sylc ABCA2+B2=C2AgcdB=1¬2A0CB
61 resqrtth CB0CBCB2=CB
62 55 60 61 syl2anc ABCA2+B2=C2AgcdB=1¬2ACB2=CB
63 51 62 oveq12d ABCA2+B2=C2AgcdB=1¬2AC+B2CB2=C+B-CB
64 63 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+B2CB22=C+B-CB2
65 simp12 ABCA2+B2=C2AgcdB=1¬2AB
66 simp13 ABCA2+B2=C2AgcdB=1¬2AC
67 65 66 8 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+B
68 65 66 11 syl2anc ABCA2+B2=C2AgcdB=1¬2ACB
69 subsq C+BCBC+B2CB2=C+B+CBC+BCB
70 67 68 69 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+B2CB2=C+B+CBC+BCB
71 70 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+B2CB22=C+B+CBC+BCB2
72 pnncan CBBC+B-CB=B+B
73 72 3anidm23 CBC+B-CB=B+B
74 2times B2B=B+B
75 74 adantl CB2B=B+B
76 73 75 eqtr4d CBC+B-CB=2B
77 4 5 76 syl2anr BCC+B-CB=2B
78 77 3adant1 ABCC+B-CB=2B
79 78 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B-CB=2B
80 79 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+B-CB2=2B2
81 2cn 2
82 2ne0 20
83 divcan3 B2202B2=B
84 81 82 83 mp3an23 B2B2=B
85 65 5 84 3syl ABCA2+B2=C2AgcdB=1¬2A2B2=B
86 80 85 eqtrd ABCA2+B2=C2AgcdB=1¬2AC+B-CB2=B
87 64 71 86 3eqtr3d ABCA2+B2=C2AgcdB=1¬2AC+B+CBC+BCB2=B
88 87 oveq1d ABCA2+B2=C2AgcdB=1¬2AC+B+CBC+BCB22=B2
89 30 88 eqtrd ABCA2+B2=C2AgcdB=1¬2AC+B+CB2C+BCB2=B2
90 3 89 eqtrid ABCA2+B2=C2AgcdB=1¬2A M N=B2
91 90 oveq2d ABCA2+B2=C2AgcdB=1¬2A2 M N=2B2
92 divcan2 B2202B2=B
93 81 82 92 mp3an23 B2B2=B
94 5 93 syl B2B2=B
95 94 3ad2ant2 ABC2B2=B
96 95 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2A2B2=B
97 91 96 eqtr2d ABCA2+B2=C2AgcdB=1¬2AB=2 M N