Metamath Proof Explorer


Theorem pzriprng

Description: The non-unital ring ( ZZring Xs. ZZring ) is unital. Direct proof in contrast to pzriprngALT . (Contributed by AV, 25-Mar-2025)

Ref Expression
Assertion pzriprng ring × 𝑠 ring Ring

Proof

Step Hyp Ref Expression
1 zringring ring Ring
2 eqid ring × 𝑠 ring = ring × 𝑠 ring
3 id ring Ring ring Ring
4 2 3 3 xpsringd ring Ring ring × 𝑠 ring Ring
5 1 4 ax-mp ring × 𝑠 ring Ring